Magnetic Cellular Assembly and Microfluidic Conditioning for Generation of Functi
用于产生功能的磁性细胞组装和微流体调节
基本信息
- 批准号:8574075
- 负责人:
- 金额:$ 47.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-13 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdultAffectAmericanArchitectureBehaviorBiomechanicsBiomedical ResearchCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCell Culture TechniquesCell DensityCell SurvivalCellsCessation of lifeComplexCultured CellsDefectDimensionsEconomic BurdenEmbryoEncapsulatedEndothelial CellsEngineeringEnsureEnvironmentExposure toFibroblastsGelGene ExpressionGenerationsGoalsHeartHydrogelsIn VitroInjuryLeadLeft ventricular structureMagnetismMechanical StressMechanicsMembraneMetabolicMicrocirculationMicrofluidicsModelingMorphologyMyocardialMyocardial InfarctionMyocardial tissueNatural regenerationNutrientPatternPerfusionPhysiologicalPopulationPropertyRecreationRegenerative MedicineRegimenRoleSeedsSiteStem cellsStretchingStructureTechniquesTechnologyThickTissue EngineeringTissue GraftsTissuesWorkbasecardiogenesiscell typecellular engineeringclinically relevantconditioningconventional therapydensitydesignexperienceflexibilityin vivomagnetic fieldmeetingsmonolayernanoparticlepressureprotein expressionrepairedscaffoldstemtissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Cardiovascular diseases affect 70 million Americans, resulting in an economic burden of $300 billion and accounting for nearly 40% of all deaths in the US. Conventional treatments of myocardial injury do not achieve myocardial regeneration. Therefore, stem cell and tissue engineering based approaches for cardiac tissue regeneration have been actively pursued. Existing scaffold based 3D tissue engineering approaches accomplish tissue regeneration in non-biomimetic environments and with limited control over 3D architecture. Mimicking the 3D cellular organization and replicating mechanical loading patterns seen in vivo will address shortcomings associated with conventional techniques and significantly enhance functionality of tissues generated in vitro. In this proposal, we will enable a platform technology for magnetic cellular assembly of multiple cell types encapsulated in magnetic hydrogels (M-Gels) that mimic the tissue-level cell densities to form 3D cardiac tissue structures. Microscale perfusion networks will be integrated into the 3D constructs to ensure delivery of nutrients and meet the high metabolic needs of cardiac cells. Patterned constructs will be cultured within a microfluidic Cardiac Cell Culture Model (CCCM) that accurately replicates pressure and stretch loading seen in the left ventricle. Our prior work clearly demonstrates our ability to pattern complex architectures in both 2D and 3D and accomplish cell culture within the CCCM under realistic mechanical stresses that promote cyclic stretch, cell alignment and spontaneous synchronous contractions. Specifically we will: (A) accomplish assembly of cardiac cells encapsulated in magnetic hydrogels (M-gels) around a sacrificial porogen network to attain in vivo like tissue-level cell densities and architecture, (B) utilize th CCCM to culture magnetically assembled cardiac tissue constructs in a cell culture environment that mimics the pressure-volume changes seen in the left ventricle and enable extraction of intact tissue following culture and (C) accomplish characterization of morphological and functional properties of magnetically assembled and microfluidically conditioned tissue constructs in vitro and determine the role of 3D patterning, integration of microscale perfusion networks and culture under loading regimens of pressure and stretch on in vitro cardiogenesis and the ability to generate functional myocardial tissue that can potentially be used to repair myocardial infarctions. Though chick embryonic cardiac cell populations will be used to demonstrate the feasibility of proposed activities, the developed techniques will be compatible with cardiac stem and progenitor cell populations for generation of functional cardiac patches.
心血管疾病影响7000万美国人,造成3000亿美元的经济负担,占美国所有死亡人数的近40%。心肌损伤的常规治疗不能实现心肌再生。因此,用于心脏组织再生的基于干细胞和组织工程的方法已经被积极地追求。现有的基于支架的3D组织工程方法在非仿生环境中实现组织再生,并且对3D架构的控制有限。模拟3D细胞组织和复制体内观察到的机械加载模式将解决与常规技术相关的缺点,并显着增强体外产生的组织的功能。在这项提案中,我们将实现一种平台技术,用于封装在磁性水凝胶(M-Gels)中的多种细胞类型的磁性细胞组装,模拟组织水平的细胞密度,以形成3D心脏组织结构。微尺度灌注网络将被集成到3D结构中,以确保营养物质的输送并满足心脏细胞的高代谢需求。将在微流体心脏细胞培养模型(CCCM)中培养图案化的构建体,该模型准确复制了左心室中观察到的压力和拉伸负荷。我们之前的工作清楚地表明了我们在2D和3D中图案化复杂架构的能力,并在CCCM内在现实的机械应力下完成细胞培养,促进循环拉伸,细胞排列和自发同步收缩。具体而言,我们将:(A)完成包封在磁性水凝胶(M-凝胶)中的心脏细胞在牺牲性致孔剂网络周围的组装,以获得体内类似组织水平的细胞密度和结构,(B)利用CCCM在细胞培养环境中培养磁性组装的心脏组织构建体,所述细胞培养环境模拟在左心室中观察到的压力-容积变化并且能够在培养后提取完整组织,以及(C)完成体外磁性组装和微流体调节组织构建体的形态和功能特性的表征,并确定3D图案化的作用,在压力和拉伸的负荷方案下整合微型灌注网络和培养物对体外心脏发生和产生可潜在用于修复心肌的功能性心肌组织的能力的影响梗塞虽然鸡胚心脏细胞群将用于证明拟议活动的可行性,但开发的技术将与心脏干细胞和祖细胞群兼容,用于生成功能性心脏补片。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Sensor-Based Physiologic Control Strategy for Biventricular Support with Rotary Blood Pumps.
- DOI:10.1097/mat.0000000000000671
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wang Y;Koenig SC;Wu Z;Slaughter MS;Giridharan GA
- 通讯作者:Giridharan GA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guruprasad A Giridharan其他文献
Guruprasad A Giridharan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guruprasad A Giridharan', 18)}}的其他基金
Physiologically relevant cardiac tissue culture model for drug testing and disease modeling
用于药物测试和疾病建模的生理相关心脏组织培养模型
- 批准号:
10654152 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant