Vessel Shear Stress & Cytomegalovirus Disease: Molecular Basis of Atherosclerosis
容器剪应力
基本信息
- 批准号:8435405
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-01 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAnimalsAntigensAreaArterial Fatty StreakArteriesAtherosclerosisBiological ModelsBloodBlood VesselsBlood flowCardiovascular DiseasesCell CommunicationCell Culture TechniquesCellsClinical ResearchComplexCytomegalovirusCytomegalovirus InfectionsDeveloped CountriesDevelopmentDiseaseDisease ProgressionEndothelial CellsEndotheliumEnvironmentEpidemiologyFatty acid glycerol estersFunctional disorderGene ExpressionGeneticGenomeGoalsHealth Care CostsHeart DiseasesHereditary DiseaseHumanImmigrationIn VitroIndividualInfectionInfiltrationInflammatoryLeukocytesLiquid substancePathogenesisPatternPhysiologicalPlayPopulationPositioning AttributePredispositionPrevalencePrevention strategyProcessProteinsRNAResearchRisk FactorsRoleSclerosisSeveritiesSimulateStagingStrokeSystemT-LymphocyteTissuesTransplantationTreesVascular DiseasesVascular EndotheliumViralViral GenesViral PathogenesisVirusatherogenesisatheroprotectivebasecell injurycell motilitycell typechemokinecost effectivedisabilityhemodynamicsinsightmacrophagemigrationmonocytemortalitynovelnovel strategiespathogenperipheral bloodpublic health relevanceregional differencerestenosisshear stress
项目摘要
DESCRIPTION (provided by applicant): Heart disease and stroke are the principal causes of mortality and long-term disability in developed nations. The major underlying cause of cardiovascular diseases is atherosclerosis, which is widely recognized as an inflammatory disease initiated by endothelial cell injury or dysfunction. Human cytomegalovirus (HCMV), a widely disseminated human pathogen, has long been proposed as a risk factor for cardiovascular disease. The pathogenesis of atherosclerosis involves interactions between multiple cell types and typically occurs in large to medium-sized arteries in regions that are branched or curved, which are exposed to disturbed patterns of blood flow and low fluid shear stress. To date, the role of HCMV infection in atherosclerosis has only been explored in static conditions. Given the importance cell-cell interactions and the role of blood flow in atherogenesis, the major goal of this research plan is to uncover key mechanisms in HCMV induced atherosclerosis in a physiological context using a flow model system. We plan to explore the bi-directional interactions of HCMV and endothelial cells under conditions of high or low shear stress in uniform and turbulent flow. To do this we will culture endothelial cells in chambers that will allow for the regulated flow of media over cells simulating blood flow. The use of uniform and step-flow chambers will allow us to simulate different types of flow patterns and shear stresses that occur in different parts of the vasculature. Using these systems we plan to analyze the effects of HCMV infection in endothelial cells exposed to varying flow patterns and shear stress as it relates to viral progression and proatherosclerotic gene expression at the protein and RNA level. In addition, we plan to determine how HCMV infection of endothelial cells in the context of flow ultimately modulates the adhesion and transendothelial migration of peripheral blood leukocytes, which is the major initial step in the development of atherosclerotic lesions. As a whole, this research plan is intended to explore the interactions between HCMV, endothelial cells, and leukocytes in the physiological context of blood flow in order to elucidate the mechanisms of HCMV induced atherosclerosis. Given the prevalence of HCMV in the human population (60-80% of adults), the mortality associated with atherosclerosis, and its impact on healthcare costs, there is a great need to determine the role of HCMV infection in the progression of atherogenesis in the physiological conditions that occur in the human artery. The long-term goal of this research plan is to provide novel insights into viral pathogenesis of atherosclerosis leading to cost effective new strategies for prevention of endothelial cell damage associated with HCMV infection.
描述(由申请人提供):心脏病和中风是发达国家死亡和长期残疾的主要原因。心血管疾病的主要潜在原因是动脉粥样硬化,其被广泛认为是由内皮细胞损伤或功能障碍引起的炎性疾病。人巨细胞病毒(HCMV)是一种广泛传播的人类病原体,长期以来一直被认为是心血管疾病的危险因素。动脉粥样硬化的发病机制涉及多种细胞类型之间的相互作用,并且通常发生在分支或弯曲区域中的大到中等尺寸的动脉中,其暴露于血流的干扰模式和低流体剪切应力。迄今为止,HCMV感染在动脉粥样硬化中的作用仅在静态条件下进行了研究。鉴于细胞间相互作用的重要性和血流在动脉粥样硬化形成中的作用,本研究计划的主要目标是使用流动模型系统在生理背景下揭示HCMV诱导动脉粥样硬化的关键机制。我们计划探索在均匀和湍流的高或低剪切应力条件下HCMV和内皮细胞的双向相互作用。为了做到这一点,我们将在腔室中培养内皮细胞,这将允许培养基在模拟血流的细胞上的调节流动。使用均匀和阶跃流动腔室将允许我们模拟在脉管系统的不同部分中发生的不同类型的流动模式和剪切应力。使用这些系统,我们计划分析HCMV感染的内皮细胞暴露于不同的流动模式和剪切力的影响,因为它涉及到病毒的进展和前动脉粥样硬化的基因表达在蛋白质和RNA水平。此外,我们计划确定如何HCMV感染的内皮细胞在流动的背景下,最终调节外周血白细胞的粘附和跨内皮迁移,这是动脉粥样硬化病变发展的主要初始步骤。总体而言,本研究计划旨在探讨HCMV、内皮细胞和白细胞在血流生理背景下的相互作用,以阐明HCMV诱导动脉粥样硬化的机制。考虑到HCMV在人群中的流行率(60-80%的成人)、与动脉粥样硬化相关的死亡率及其对医疗费用的影响,非常需要确定HCMV感染在人体动脉中发生的生理条件下动脉粥样硬化形成进展中的作用。这项研究计划的长期目标是提供新的见解动脉粥样硬化的病毒发病机制,导致成本效益的新策略,预防与HCMV感染相关的内皮细胞损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jenny B DuRose其他文献
Jenny B DuRose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jenny B DuRose', 18)}}的其他基金
Vessel Shear Stress & Cytomegalovirus Disease: Molecular Basis of Atherosclerosis
容器剪应力
- 批准号:
8216464 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
Vessel Shear Stress & Cytomegalovirus Disease: Molecular Basis of Atherosclerosis
容器剪应力
- 批准号:
8001590 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 5.39万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 5.39万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 5.39万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:














{{item.name}}会员




