Mass spectrometry to decode PTM patterns and enhance the Biomarker utility of ER
质谱法解码 PTM 模式并增强 ER 的生物标志物效用
基本信息
- 批准号:8447380
- 负责人:
- 金额:$ 32.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-23 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAdjuvantAmino AcidsAromatase InhibitorsBiological AssayBiological MarkersBreast Cancer CellCancer cell lineCell LineChemicalsClinicalCodeDNA Binding DomainEndocrineEstrogen AntagonistsEstrogen Receptor ModulatorsEstrogen ReceptorsEstrogensEvaluationFundingGene ExpressionGrowth FactorHumanIndividualLigand Binding DomainLigandsLinkMalignant NeoplasmsMammary NeoplasmsMass Spectrum AnalysisMeasuresMedicalMethylationModificationMolecularMolecular ConformationMolecular ProfilingMonitorMutateOutcomeOxidantsOxidative StressOxidative Stress InductionPatternPhenotypePhosphorylationPhosphorylation SitePost-Translational Protein ProcessingPredictive ValuePrevalenceProceduresProtein IsoformsProteinsProtocols documentationRelapseResearch PersonnelResistanceSamplingSignal TransductionSpecificityStructureTamoxifenTestingUbiquitinationanalytical toolanticancer researchbasecancer therapyclinical decision-makingclinically relevantcohortdesignestrophilinhormone therapyhuman ESR1 proteinimprovedinsightinterestmalignant breast neoplasmmultiple reaction monitoringnoveloverexpressionoxidationpreventprognosticpublic health relevanceresponsetandem mass spectrometrytooltumor
项目摘要
DESCRIPTION (provided by applicant): Estrogen receptor (ER, alpha isoform) was the first biomarker to be clinically validated as a predictor of cancer therapy response, and still stands as one of the few tumor biomarkers with sufficient medical evidence to justify its routine use in clinical decision making. While low or absent tumor ER expression (ER-) accurately predicts lack of responsiveness to endocrine therapy, tumor overexpression of ER (ER+) is a poor predictor of response with an accuracy averaging only 50%. Hence, improving the predictive accuracy of current ER assays that measure only tumor ER content is one of the most important unresolved issues in cancer research. Since the constellation of posttranslational modifications (PTMs) on any given protein is known to be a molecular code dictating conformation, localization, and intracellular function, we assembled an interdisciplinary team of translational investigators and protein chemists who developed mass spectrometry (MS) approaches, employing multiple reaction monitoring (MRM) capable of detecting and quantitating diverse PTMs, including Ser/Thr/Tyr phosphorylations, Lys modifications (acetylation/methylation/ubiquitination), and Cys oxidation across the six domains of endogenously expressed ER protein. Two study aims are proposed based on the premise that decoding ER PTMs is essential for improving ER biomarker specificity and the clinical subtyping of ER+ breast cancers. Aim 1 studies will fully optimize MRM/MS procedures to quantitate ligand-dependent (estrogen) and ligand-independent (growth factor, oxidative stress) induction of ER PTMs across a panel of ER+ human breast cancer cell lines selected for their range of antiestrogen sensitivities. Special emphasis will be given to the ER hinge and DNA-binding domains where specific PTM patterns are known to alter ER functionality and determine antiestrogen sensitivity. The functional impact of novel ER PTMs will also be assessed by introducing mutated ER PTM constructs and evaluating their intracellular impact on endogenous ER dependent gene expression. Among other objectives, Aim 1 efforts will generate a candidate PTM profile predictive of cell line antiestrogen resistance for further evaluation in Aim 2 tumor samples. Aim 2 studies will employ fully optimized MRM/MS protocols from Aim 1 to evaluate the prevalence and spectrum of tumor ER PTMs using two different clinically annotated cohorts of ER+ primary breast cancers. The two tumor cohorts available for MRM/MS analysis are powered to: i) validate our Aim 1 derived ER PTM profile associating with cell line tamoxifen responsiveness, and ii) independently derive and validate a tumor ER PTM profile associating with clinical resistance to adjuvant tamoxifen and other aggressive tumor features linked to early clinical relapse. On completion of these study aims, quantitative MRM/MS assays will have defined the spectrum and prevalence of all breast cancer PTMs, and a PTM pattern associated with more aggressive and antiestrogen resistant breast cancers will have been identified and validated.
描述(由申请人提供):雌激素受体(ER,α亚型)是第一个被临床证实为癌症治疗反应预测指标的生物标志物,并且仍然是少数几个有足够医学证据证明其在临床决策中常规使用的肿瘤生物标志物之一。虽然低表达或缺乏肿瘤ER表达(ER-)可以准确地预测内分泌治疗缺乏反应性,但ER+的肿瘤过度表达是一个很差的预测指标,其准确率平均只有50%。因此,提高目前仅测量肿瘤ER含量的ER分析的预测准确性是癌症研究中最重要的悬而未决的问题之一。由于已知任何给定蛋白质上的翻译后修饰(PTM)是决定构象、定位和细胞内功能的分子代码,我们组建了一个由翻译研究人员和蛋白质化学家组成的跨学科团队,他们开发了质谱学(MS)方法,使用多反应监测(MRM)能够检测和定量各种翻译后修饰,包括丝氨酸/苏氨酸/酪氨酸磷酸化、赖氨酸修饰(乙酰化/甲基化/泛素化)和半胱氨酸氧化内源表达的ER蛋白的六个区域。两个研究目标是基于这样一个前提,即解码ER PTM对于提高ER生物标记物的特异性和ER+乳腺癌的临床亚型至关重要。目的1研究将全面优化MRM/MS程序,以定量在一组ER+人乳腺癌细胞系中定量诱导配体依赖(雌激素)和配体非依赖性(生长因子,氧化应激)的ER PTM,以选择其抗雌激素敏感性范围。将特别强调ER铰链和DNA结合域,在这些区域中,已知特定的PTM模式改变ER功能和决定抗雌激素敏感性。还将通过引入突变的ER PTM结构并评估它们对内源性ER依赖基因表达的影响来评估新型ER PTM的功能影响。在其他目标中,AIM 1的努力将产生预测细胞系抗雌激素耐药性的候选PTM图谱,用于在AIM 2肿瘤样本中进一步评估。目的2研究将使用来自AIM 1的完全优化的MRM/MS方案来评估使用两个不同临床注释的ER+原发乳腺癌队列的肿瘤ER PTM的患病率和频谱。可用于MRM/MS分析的两个肿瘤队列:i)验证我们的目标1派生的ER PTM谱与细胞系他莫昔芬的反应性相关,以及ii)独立派生和验证肿瘤ER PTM谱,与临床对他莫昔芬的耐药性及其他与早期临床复发相关的侵袭性肿瘤特征有关。在完成这些研究目标后,定量MRM/MS分析将确定所有乳腺癌PTM的谱和流行率,并将识别和验证与更具侵袭性和抗雌激素耐药性的乳腺癌相关的PTM模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Benz其他文献
Christopher Benz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Benz', 18)}}的其他基金
UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
- 批准号:
10671031 - 财政年份:2021
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
- 批准号:
10300936 - 财政年份:2021
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
- 批准号:
10483164 - 财政年份:2021
- 资助金额:
$ 32.31万 - 项目类别:
Polyribosome targets mediating mRNA decay for cancer prediction and therapy
多核糖体靶向介导 mRNA 衰减,用于癌症预测和治疗
- 批准号:
8189284 - 财政年份:2011
- 资助金额:
$ 32.31万 - 项目类别:
Polyribosome targets mediating mRNA decay for cancer prediction and therapy
多核糖体靶向介导 mRNA 衰减,用于癌症预测和治疗
- 批准号:
8287560 - 财政年份:2011
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
7942768 - 财政年份:2009
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
7789014 - 财政年份:2009
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8117695 - 财政年份:2009
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8537845 - 财政年份:2009
- 资助金额:
$ 32.31万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8309386 - 财政年份:2009
- 资助金额:
$ 32.31万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Studentship
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别: