UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
基本信息
- 批准号:10300936
- 负责人:
- 金额:$ 41.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAtlasesAutomobile DrivingBehaviorCancer PatientCell ExtractsCellsCharacteristicsClinicalClinical ProtocolsClinical TrialsClinical Trials NetworkCollaborationsCollectionCompetenceComplexComputing MethodologiesDataData SetEvolutionFutureGene Expression ProfileGenomeGenome Data Analysis CenterGenome Data Analysis NetworkGenomicsGleanGoalsHealthHumanKnowledgeLeadMachine LearningMapsMessenger RNAModalityMolecularOutcomePathway AnalysisPathway interactionsPatient-Focused OutcomesPatientsPatternPlayPrediction of Response to TherapyPredictive ValuePrognosisPublicationsRoleSamplingSomatic MutationSupervisionThe Cancer Genome AtlasTrainingTumor SubtypeVisualizationWorkbasecancer therapycell typecomputerized toolsdata explorationgene expression databasegenomic dataindividual patientinnovationlearning classifiermRNA sequencingmachine learning methodmultiple omicsneoplastic cellnovelpatient responsepredicting responsepressureprognostic valuesingle cell mRNA sequencingsurvival outcometreatment armtreatment responsetumortumor heterogeneitytumor microenvironmenttumor progressionworking group
项目摘要
ABSTRACT
Tumor heterogeneity -- the complex mix of tumor subclones, the cell-of-origin that first became transformed,
the evolution of tumor subclones under selective pressures of the body and due to treatment, and the interplay
of these cells with the tumor microenvironment (TME) -- contributes to the character, behavior, and mystery of
tumors and is a key determinant of cancer progression and a patient’s response to therapy. Large-scale
genomics projects like the Cancer Genome Atlas (TCGA) and the Genome Data Analysis Network (GDAN)
have revealed important characteristics and patterns from a multi-omics overview of various tumor types.
However, it remains a mystery on how to maximize the use of these data to choose the best course of
treatment for an individual patient. The proposed GDAN will close this gap in knowledge by collecting clinical
information and outcomes endpoints alongside the multiple omics platforms that will provide key linkages upon
which to train supervised computational approaches. We propose to contribute our key competencies of
pathway analysis, integrative machine-learning, mRNA-seq analysis, assessment of driving somatic mutations,
and visualization of high-throughput datasets to serve the future GDAN analysis working groups (AWGs) to
achieve these goals. We will collect and share widely a database of gene expression signatures that capture
cell state information gleaned from the large collection of single-cell mRNA sequencing data such as from the
Human Cell Atlas (Aim 1). In addition, we will contribute our existing, and novel extensions to,
machine-learning approaches like AKIMATE to maximally use these signatures and others in combination with
AWG-approved omics datasets as features to train accurate predictors of response for the GDAN’s studies like
ALCHEMIST (Aim 2). Our proposal will adapt the TumorMap to benefit weekly analysis and bolster the
exploration and publication of results. Specifically, we will work with the group to create new maps that show
the TME and TIC comparisons of the patient samples separately to help elucidate new important subtypes
implied by the collected data (Aim 3). As we have done for the past twelve years for TCGA and the GDAN, we
propose to continue working closely with the consortium in these endeavors to significantly enrich our
understanding of the molecular and cellular basis of tumor heterogeneity and its influence on cancer
progression and treatment response.
摘要
肿瘤异质性--肿瘤亚克隆的复杂混合,最初转化的原始细胞,
肿瘤亚克隆在身体的选择性压力下和由于治疗的演变,以及它们之间的相互作用
这些细胞与肿瘤微环境(TME)的关系-有助于肿瘤的特征,行为和神秘性。
是癌症进展和患者对治疗反应的关键决定因素。大规模
癌症基因组图谱(TCGA)和基因组数据分析网络(GDAN)等基因组学项目
已经从各种肿瘤类型的多组学概述中揭示了重要的特征和模式。
然而,如何最大限度地利用这些数据来选择最佳的课程仍然是一个谜。
为个别患者提供治疗。拟议的GDAN将通过收集临床数据,
信息和成果终点以及多个组学平台,这些平台将在以下方面提供关键联系
用来训练有监督的计算方法我们建议贡献我们的关键能力,
途径分析,综合机器学习,mRNA-seq分析,驱动体细胞突变的评估,
高通量数据集的可视化,以服务于未来的GDAN分析工作组(AWG),
以实现这些目标。我们将收集并广泛分享基因表达特征数据库,
从大量的单细胞mRNA测序数据中收集的细胞状态信息,例如来自
人类细胞图谱(Aim 1)。此外,我们将贡献我们现有的,和新的扩展,
机器学习方法,如AKIMATE,最大限度地使用这些签名和其他结合
AWG批准的组学数据集作为特征,用于为GDAN的研究训练准确的响应预测因子,
炼金术士(目标2)。我们的提案将调整TumorMap,以利于每周分析,并支持
探索和公布成果。具体来说,我们将与该小组合作,创建新的地图,
分别对患者样本进行TME和TIC比较,以帮助阐明新的重要亚型
所收集的数据(目标3)暗示。正如我们过去12年为TCGA和GDAN所做的那样,我们
我建议继续与该财团密切合作,以大大丰富我们的
了解肿瘤异质性的分子和细胞基础及其对癌症的影响
进展和治疗反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Benz其他文献
Christopher Benz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Benz', 18)}}的其他基金
UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
- 批准号:
10671031 - 财政年份:2021
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Genome Data Analysis Center for the Genomic Data Analysis Network v2.0
UCSC-Buck 基因组数据分析中心基因组数据分析网络 v2.0
- 批准号:
10483164 - 财政年份:2021
- 资助金额:
$ 41.29万 - 项目类别:
Polyribosome targets mediating mRNA decay for cancer prediction and therapy
多核糖体靶向介导 mRNA 衰减,用于癌症预测和治疗
- 批准号:
8189284 - 财政年份:2011
- 资助金额:
$ 41.29万 - 项目类别:
Polyribosome targets mediating mRNA decay for cancer prediction and therapy
多核糖体靶向介导 mRNA 衰减,用于癌症预测和治疗
- 批准号:
8287560 - 财政年份:2011
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
7942768 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
7789014 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8117695 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8537845 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所
- 批准号:
8309386 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
UCSC-Buck Inst. Genome Data Analysis Center for TCGA Research Network (GDAC)
UCSC-巴克研究所。
- 批准号:
8925188 - 财政年份:2009
- 资助金额:
$ 41.29万 - 项目类别:
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 41.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 41.29万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 41.29万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 41.29万 - 项目类别: