Predictive Modeling of collective swimming in bacterial supensions
细菌悬浮液中集体游泳的预测模型
基本信息
- 批准号:8500406
- 负责人:
- 金额:$ 21.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAerobicAppearanceBacteriaBacterial TypingBehaviorBerylliumBiologicalCellsCooperative BehaviorDependenceDevelopmentDiseaseElementsEquationEvaluationEvolutionGoalsIndividualKineticsKnowledgeLifeLife Cycle StagesLiquid substanceLocationMedicalMicrobial BiofilmsMicroscopicModelingMotionNoiseOrganOrganismOxygenPlayPositioning AttributeProbabilityPropertyRelative (related person)ResearchRoleScienceSpeedSuspension substanceSuspensionsSwimmingSystemTimeTissuesViscosityWorkbasedensitydesignhuman tissueinsightmathematical modelnovelpredictive modelingresearch studyself organizationtheories
项目摘要
Collective swimming -- a highly correlated motion of bacteria -- plays an important role in the life cycle of many bacterial species. Experiments, some conducted under the direction of one of the coPIs, have uncovered several important consequences of collective motion in suspensions of swimming bacteria: a dramatic increase in the effective diffusivity, a lowering of the effective viscosity by an order of magnitude, and the extraction of useful work from the correlated motion of bacteria. These phenomena clearly distinguish the properties of bacterial suspensions both from the properties of the fluid they swim in, and from the properties of individual swimming bacteria. In particular, an effective diffusivity enhanced by the collective motion of an aerobic bacterial colony leads to an increased supply of dissolved oxygen -- a survival advantage relative to an isolated bacterium. Collective swimming manifests in the appearance of persistent coherent configurations of bacteria many times the size of a single bacterium. However, a description of the mechanism leading to collective motion remains lacking. The goal of this project is to use mathematical modeling and carefully designed experiments to advance the understanding of the mechanisms of this type of bacterial self-organization. This can in turn have a profound effect on the state of biological an medical sciences: from to insight into the formation of biofilms and evolution of multicellular organisms from unicellular, to the understanding of the formation and organization of tissues and organs.
There are many theoretical works trying to explain the appearance of collective motion and its impact on the macroscopic properties of the system. Most are based on the assumption of the central role of the additive long-range hydrodynamic interactions between the bacteria, which in the context of kinetic theory can be accurately captured by the mean field approximation. This assumption, however, is not accurate in the disordered configurations prevalent before the onset of collective motion, were the dipolar fields from different bacteria largely cancel each other. Here fluctuations -- deviations from the mean -- are significant, and the strongest interactions are due to collisions between the bacteria. Here a new kinetic model is proposed that goes beyond the mean field approximation and, in particular, incorporates fluctuations and captures collisions. The effect of binary inelastic collisions will be modeled using an integral operator. The fluctuations will take the form of a self-quenching white noise - a noise whose strength decays when the local alignment between the bacteria increases, reflecting the physical fact that in a highly-aligned configuration collisions are rare. This approach leads to a generalized Fokker-Plank equation (GFPE) - a time-dependent integro-differential equation governing the position and orientation of a single bacterium. GFPE will be derived, analyzed and validated against suitably-designed experiments.
集体游泳--细菌的一种高度相关的运动--在许多细菌物种的生命周期中起着重要作用。一些实验是在coPI的指导下进行的,它们揭示了游泳细菌悬浮液中集体运动的几个重要后果:有效扩散率的急剧增加,有效粘度降低一个数量级,以及从细菌的相关运动中提取有用的功。这些现象清楚地将细菌悬浮液的性质与它们在其中游动的流体的性质以及单个游动细菌的性质区分开来。特别是,通过好氧细菌菌落的集体运动增强的有效扩散率导致溶解氧的供应增加-相对于孤立细菌的生存优势。集体游泳表现在细菌的持久连贯配置的外观是单个细菌大小的许多倍。然而,仍然缺乏对导致集体运动的机制的描述。该项目的目标是使用数学建模和精心设计的实验来促进对这种细菌自组织机制的理解。这反过来又会对生物学和医学产生深远的影响:从洞察生物膜的形成和多细胞生物从单细胞生物的进化,到理解组织和器官的形成和组织。
有许多理论著作试图解释集体运动的出现及其对系统宏观性质的影响。大多数是基于假设的核心作用的添加剂之间的远程流体动力学相互作用的细菌,这在动力学理论的背景下,可以准确地捕获的平均场近似。然而,这种假设在集体运动开始之前普遍存在的无序配置中是不准确的,来自不同细菌的偶极场在很大程度上相互抵消。在这里波动-偏离平均值-是显着的,最强的相互作用是由于细菌之间的碰撞。在这里,提出了一个新的动力学模型,超越了平均场近似,特别是,采用波动和捕获碰撞。二元非弹性碰撞的影响将使用积分算子来模拟。这种波动将以自猝灭白色噪声的形式出现--当细菌之间的局部排列增加时,这种噪声的强度就会衰减,这反映了一个物理事实,即在高度排列的构型中,碰撞是罕见的。这种方法导致一个广义的福克-普朗克方程(GFPE)-时间依赖的积分微分方程的位置和方向的一个单一的细菌。GFPE将根据适当设计的实验进行推导、分析和验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Berlyand其他文献
Leonid Berlyand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Berlyand', 18)}}的其他基金
Predictive Modeling of collective swimming in bacterial supensions
细菌悬浮液中集体游泳的预测模型
- 批准号:
8446640 - 财政年份:2012
- 资助金额:
$ 21.17万 - 项目类别:
Predictive Modeling of collective swimming in bacterial supensions
细菌悬浮液中集体游泳的预测模型
- 批准号:
8656377 - 财政年份:2012
- 资助金额:
$ 21.17万 - 项目类别:
相似海外基金
Developing Late Metal Catalytic Systems for Aerobic Partial Oxidation of Alkanes
开发烷烃有氧部分氧化的后金属催化系统
- 批准号:
2247667 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Standard Grant
Targeting aerobic glycolysis via hexokinase 2 inhibition in Natural Killer T cell lymphomas
通过抑制己糖激酶 2 靶向自然杀伤 T 细胞淋巴瘤中的有氧糖酵解
- 批准号:
23K07830 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
- 批准号:
10581973 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
- 批准号:
10585366 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
- 批准号:
10696409 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
- 批准号:
2241873 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Standard Grant
Effect of aerobic exercise-induced sleep changes on arterial stiffness associated with postprandial hyperglycemia.
有氧运动引起的睡眠变化对与餐后高血糖相关的动脉僵硬度的影响。
- 批准号:
23K10645 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pro-Resolving Inflammatory Mediators in Neurovascular Gains in Aerobic Training; a phase 2, double-blind, randomized placebo-controlled trial (PRIMiNG-AT2)
有氧训练中促进神经血管增益的炎症介质的消除;
- 批准号:
485524 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
Operating Grants
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:
The Effects of Aerobic Exercise on Cardiovascular Health in Postmenopausal Females: A Systematic Review and Meta-Analysis
有氧运动对绝经后女性心血管健康的影响:系统评价和荟萃分析
- 批准号:
480729 - 财政年份:2023
- 资助金额:
$ 21.17万 - 项目类别:














{{item.name}}会员




