Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
基本信息
- 批准号:8403718
- 负责人:
- 金额:$ 58.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAnatomyAngiographyAnimal ModelArrhythmiaAtrial FibrillationCaliberCalibrationCardiacCardiac ablationCardiologyCataractCathetersClinicalCoronaryCoronary ArteriosclerosisCoronary VesselsCountryDevicesDiagnostic radiologic examinationDigital X-RayDimensionsDoseExposure toFluoroscopyFundingGoalsImageImageryImaging DeviceInjuryInterventionLaboratoriesLeft atrial structureLifeMalignant NeoplasmsMapsMeasurementMedical StaffMorbidity - disease rateNoiseOutcomePatientsPositioning AttributeProceduresRadiationRadiation InjuriesRelative (related person)ResearchResearch ProposalsResolutionRiskRoentgen RaysSavingsScanningSignal TransductionSkinSocietiesStentsSurfaceSystemTechniquesTechnologyTestingTherapeuticThree-Dimensional ImagingTimeUnited States National Institutes of HealthWorkX-Ray Computed Tomographybasecoronary angioplastydetectordigitalheart visualizationhuman subjectimprovedmortalitynovelnovel therapeuticspatient safetyrapid diagnosisreconstructiontool
项目摘要
ABSTRACT
X-ray fluoroscopy provides a combination of real-time imaging, high spatial resolution, ease of use, and device
compatibility that is essential for rapid diagnosis of coronary artery disease and catheter guidance during
fluoroscopically-guided interventional (FGI) procedures. Although the millions of FGI procedures performed in
the U.S. each year undeniably improve and save lives, these procedures entail a radiation burden on both the
patient and the medical staff who perform them. Radiation risks include serious skin injury, cataracts, and
cancer. Unfortunately, there is limited room for improvement in the dose efficiency of conventional x-ray
systems. The 2D projection format of conventional fluoroscopy also fails to provide the 3D device and
anatomic information needed for modern catheter ablation procedures. The goal of this project is to develop a
novel inverse-geometry x-ray fluoroscopic system that will dramatically reduce x-ray dose to patient and staff,
while simultaneously providing real-time 3D catheter guidance.
The Scanning-Beam Digital X-ray (SBDX) system is a low-dose fluoroscopic/fluorographic system that
performs 30 frame/sec imaging using low-scatter inverse-geometry scanning. Previous NIH-funded research
enabled the construction of an advanced SBDX system capable of reducing patient entrance skin dose to 15%
of a conventional dose while maintaining 100% of conventional image signal-to-noise ratio. This research also
yielded two new interventional techniques that exploit the unique SBDX real-time, multiplane, tomosynthetic
reconstructor: frame-by-frame 3D catheter tip tracking and calibration-free 3D vessel analysis for device sizing.
This new proposal will advance SBDX into the interventional laboratory through three projects. First, a human
subjects study will be performed to compare SBDX and conventional x-ray dose, image quality, and
interventional device sizing accuracy. Second, a procedure-room system for 3D catheter tracking and cardiac
visualization will be constructed and validated in an animal model of ablation in the left atrium. Third, the ability
to perform SBDX computed tomography in the interventional room will be developed, in order to provide 3D
cardiac maps for ablation procedures without the need for a separate, pre-procedure CT scan.
Reducing x-ray dose in the cardiac cath lab is critical to maximizing the safety of patient and staff. Real-time
three-dimensional imaging capability is needed for many modern interventional procedures. The successful
conclusion of this research will be a low dose x-ray fluoroscopic system which provides clinical image quality,
novel therapeutic tools, and 3D imaging capability in a single interventional laboratory.
抽象的
X 射线透视结合了实时成像、高空间分辨率、易用性和设备
兼容性对于冠状动脉疾病的快速诊断和导管引导至关重要
荧光镜引导介入(FGI)手术。尽管数以百万计的 FGI 手术在
无可否认,美国每年都在改善和拯救生命,但这些程序对双方都造成了辐射负担
患者和执行这些操作的医务人员。辐射风险包括严重的皮肤损伤、白内障和
癌症。遗憾的是,传统 X 射线剂量效率的改进空间有限
系统。传统透视的2D投影格式也无法提供3D设备和
现代导管消融手术所需的解剖信息。该项目的目标是开发一个
新颖的逆几何 X 射线透视系统将大大减少患者和工作人员的 X 射线剂量,
同时提供实时 3D 导管引导。
扫描束数字 X 射线 (SBDX) 系统是一种低剂量荧光透视/荧光照相系统,
使用低散射逆几何扫描执行 30 帧/秒成像。以前的 NIH 资助的研究
构建了先进的 SBDX 系统,能够将患者入口皮肤剂量减少至 15%
传统剂量的同时保持 100% 的传统图像信噪比。这项研究还
产生了两种新的介入技术,利用独特的 SBDX 实时、多平面、断层合成技术
重建器:逐帧 3D 导管尖端跟踪和免校准 3D 血管分析,用于确定设备尺寸。
这项新提案将通过三个项目将 SBDX 推进介入实验室。首先,一个人
将进行受试者研究以比较 SBDX 和传统 X 射线剂量、图像质量和
介入设备尺寸的准确性。其次,用于 3D 导管跟踪和心脏检查的手术室系统
将在左心房消融动物模型中构建和验证可视化。三、能力
将开发在介入室进行 SBDX 计算机断层扫描,以提供 3D
用于消融手术的心脏图,无需单独的手术前 CT 扫描。
减少心导管实验室中的 X 射线剂量对于最大限度地提高患者和工作人员的安全至关重要。即时的
许多现代介入手术都需要三维成像能力。成功者
这项研究的结论将是提供临床图像质量的低剂量 X 射线透视系统,
新颖的治疗工具和单一介入实验室的 3D 成像功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Speidel其他文献
Michael A Speidel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Speidel', 18)}}的其他基金
Dual-Energy Subtraction Angiography for Transcatheter Interventions
用于经导管干预的双能减影血管造影
- 批准号:
9456205 - 财政年份:2017
- 资助金额:
$ 58.29万 - 项目类别:
Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
- 批准号:
8239054 - 财政年份:2007
- 资助金额:
$ 58.29万 - 项目类别:
Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
- 批准号:
8589600 - 财政年份:2007
- 资助金额:
$ 58.29万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 58.29万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 58.29万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 58.29万 - 项目类别:
Studentship














{{item.name}}会员




