Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
基本信息
- 批准号:8589600
- 负责人:
- 金额:$ 63.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAnatomyAngiographyAnimal ModelArrhythmiaAtrial FibrillationCaliberCalibrationCardiacCardiac ablationCardiologyCataractCathetersClinicalCoronaryCoronary ArteriosclerosisCoronary VesselsCountryDevicesDiagnostic radiologic examinationDigital X-RayDimensionsDoseExposure toFluoroscopyFundingGeometryGoalsImageImageryImaging DeviceInjuryInterventionLaboratoriesLeft atrial structureLifeMalignant NeoplasmsMapsMeasurementMedical StaffMorbidity - disease rateNoiseOutcomePatientsPositioning AttributeProceduresRadiationRadiation InjuriesRelative (related person)ResearchResearch ProposalsResolutionRiskRoentgen RaysSavingsScanningSignal TransductionSkinSocietiesStentsSurfaceSystemTechniquesTechnologyTestingTherapeuticThree-Dimensional ImagingTimeUnited States National Institutes of HealthWorkX-Ray Computed Tomographybasecoronary angioplastydetectordigitalheart visualizationhuman subjectimprovedmortalitynovelnovel therapeuticspatient safetyrapid diagnosisreconstructiontool
项目摘要
ABSTRACT
X-ray fluoroscopy provides a combination of real-time imaging, high spatial resolution, ease of use, and device
compatibility that is essential for rapid diagnosis of coronary artery disease and catheter guidance during
fluoroscopically-guided interventional (FGI) procedures. Although the millions of FGI procedures performed in
the U.S. each year undeniably improve and save lives, these procedures entail a radiation burden on both the
patient and the medical staff who perform them. Radiation risks include serious skin injury, cataracts, and
cancer. Unfortunately, there is limited room for improvement in the dose efficiency of conventional x-ray
systems. The 2D projection format of conventional fluoroscopy also fails to provide the 3D device and
anatomic information needed for modern catheter ablation procedures. The goal of this project is to develop a
novel inverse-geometry x-ray fluoroscopic system that will dramatically reduce x-ray dose to patient and staff,
while simultaneously providing real-time 3D catheter guidance.
The Scanning-Beam Digital X-ray (SBDX) system is a low-dose fluoroscopic/fluorographic system that
performs 30 frame/sec imaging using low-scatter inverse-geometry scanning. Previous NIH-funded research
enabled the construction of an advanced SBDX system capable of reducing patient entrance skin dose to 15%
of a conventional dose while maintaining 100% of conventional image signal-to-noise ratio. This research also
yielded two new interventional techniques that exploit the unique SBDX real-time, multiplane, tomosynthetic
reconstructor: frame-by-frame 3D catheter tip tracking and calibration-free 3D vessel analysis for device sizing.
This new proposal will advance SBDX into the interventional laboratory through three projects. First, a human
subjects study will be performed to compare SBDX and conventional x-ray dose, image quality, and
interventional device sizing accuracy. Second, a procedure-room system for 3D catheter tracking and cardiac
visualization will be constructed and validated in an animal model of ablation in the left atrium. Third, the ability
to perform SBDX computed tomography in the interventional room will be developed, in order to provide 3D
cardiac maps for ablation procedures without the need for a separate, pre-procedure CT scan.
Reducing x-ray dose in the cardiac cath lab is critical to maximizing the safety of patient and staff. Real-time
three-dimensional imaging capability is needed for many modern interventional procedures. The successful
conclusion of this research will be a low dose x-ray fluoroscopic system which provides clinical image quality,
novel therapeutic tools, and 3D imaging capability in a single interventional laboratory.
摘要
X射线荧光透视提供了实时成像、高空间分辨率、易用性和设备
兼容性对于冠状动脉疾病的快速诊断和导管引导至关重要,
透视引导介入(FGI)手术。尽管在美国进行的数百万次FGI手术,
虽然美国每年都在改善和挽救生命,但这些程序对美国和欧洲都造成了辐射负担。
患者和执行这些操作的医务人员。辐射风险包括严重的皮肤损伤,白内障,
癌不幸的是,常规X射线的剂量效率的改进空间有限
系统.传统荧光透视的2D投影格式也不能提供3D设备,
现代导管消融手术所需的解剖信息。该项目的目标是开发一个
一种新颖的反向几何结构X射线荧光透视系统,其将显著减少对患者和工作人员的X射线剂量,
同时提供实时3D导管引导。
扫描束数字X射线(SBDX)系统是一种低剂量荧光透视/荧光摄影系统,
使用低散射逆几何扫描执行30帧/秒成像。NIH资助的研究
能够构建先进的SBDX系统,能够将患者入射皮肤剂量降低至15%
同时保持100%的常规图像信噪比。本研究也
产生了两种新的介入技术,利用独特的SBDX实时,多平面,断层合成
重建器:逐帧3D导管头端跟踪和免校准3D血管分析,用于确定器械尺寸。
这项新提案将通过三个项目将SBDX推进到介入实验室。首先,一个人类
将进行受试者研究,以比较SBDX和传统X射线剂量、图像质量和
介入器械尺寸准确性。第二,用于3D导管跟踪和心脏检查的手术室系统。
将在左心房中的消融的动物模型中构建和验证可视化。第三,能力
将开发在介入室进行SBDX计算机断层扫描,以提供3D
心脏标测图用于消融手术,无需单独的术前CT扫描。
减少心脏导管室的X射线剂量对于最大限度地提高患者和工作人员的安全至关重要。实时
许多现代介入过程需要三维成像能力。成功
本研究的结论是提供临床图像质量的低剂量X射线荧光检查系统,
新的治疗工具和3D成像能力在一个单一的介入实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Speidel其他文献
Michael A Speidel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Speidel', 18)}}的其他基金
Dual-Energy Subtraction Angiography for Transcatheter Interventions
用于经导管干预的双能减影血管造影
- 批准号:
9456205 - 财政年份:2017
- 资助金额:
$ 63.26万 - 项目类别:
Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
- 批准号:
8403718 - 财政年份:2007
- 资助金额:
$ 63.26万 - 项目类别:
Low-Dose Tomosynthetic Interventional System For Quantitative Cardiac Imaging
用于定量心脏成像的低剂量断层合成介入系统
- 批准号:
8239054 - 财政年份:2007
- 资助金额:
$ 63.26万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 63.26万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 63.26万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 63.26万 - 项目类别:
Studentship














{{item.name}}会员




