The Role of Gliotransmission in Cerebral Ischemia
胶质细胞传输在脑缺血中的作用
基本信息
- 批准号:8460525
- 负责人:
- 金额:$ 30.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAstrocytesBiologicalBiological AssayBiologyBrainBrain InjuriesBrain IschemiaCellsCerebral IschemiaCessation of lifeDiseaseElectrophysiology (science)ExhibitsFrequenciesFunctional disorderGlutamatesGoalsHealthHistocytochemistryHumanImageImmunohistochemistryInjuryInterventionIschemiaKnowledgeMagnetic Resonance ImagingMediatingMicrodialysisMicroscopyMolecularMolecular GeneticsMusN-Methyl-D-Aspartate ReceptorsNR2B NMDA receptorNatureNerve DegenerationNeurogliaNeuronsPathogenesisPathway interactionsPeripheralPharmacological TreatmentPhospholipase CPhysiologicalPropertyPublic HealthRegulationRelative (related person)RoleSignal PathwaySignal TransductionStagingStrokeSynapsesTechnologyTestingTherapeuticTransgenic MiceViralWorkastrogliosisbaseexcitotoxicityexperienceextracellularin vivoinsightmouse modelnervous system disorderneuronal excitabilitynew therapeutic targetnovelpublic health relevanceresponsetripolyphosphatetwo-photonvirtual
项目摘要
DESCRIPTION (provided by applicant): As a leading neurological disorder, acute cerebral ischemia accounts for approximately 80% of all human strokes and has a major impact on public health. Understanding the pathophysiology is essential to develop therapeutic avenues to minimize brain damage. Thus, the project goal is to determine the novel role of astrocytes in a mouse model of ischemia-induced neuronal death and brain damage. Our central hypothesis is that astrocytes induce neuronal excitotoxic responses through enhanced Ca2+-dependent glutamate release (gliotransmission) and consequently contribute to ischemia-induced neuronal death and brain damage. A variety of state-of-the-art technologies including 2-P microscopy, electrophysiology, viral transduction and transgenic mice will be used to test this hypothesis. We have three SPECIFIC hypotheses: 1) Focal ischemia induces enhanced Ca2+ excitability in astrocytes in the ischemic core as well as in the penumbra and mediates glutamate release from these glial cells. Using 2-P in vivo Ca2+ imaging we will study the spatial and temporal dynamics of astrocytic Ca2+ signaling in the ischemic region and characterize the properties of Ca2+ oscillations. Using pharmacological interventions as well as astrocyte-specific molecular genetic approaches including viral transduction and transgenic mice, we will identify the molecular basis and the properties of astrocytic Ca2+ excitability that follows photothrombosis. 2) Astrocytes stimulate N-methyl-D-aspartate receptors (NMDARs)-mediated neuronal excitation during the period of their Ca2+ hyperexcitability following ischemia. Using 2-P microscopy and electrophysiology, we will determine the effects of gliotransmission on neuronal excitation following ischemia. Specifically, we will determine whether astrocytes stimulate the NR2B- containing NMDAR (NR2B-NMDAR)-mediated neuronal excitation after ischemia. 3) Astrocytes exacerbate ischemia-induced delayed neuronal death and brain damage through Ca2+-dependent gliotransmission. Using immunohistochemistry and a neuronal death assay, we will determine the role of gliotransmission in mediating neuronal death and brain damage. Furthermore we will test whether NR2B-NMDARs are involved in gliotransmission-mediated neuronal death. Although there are many studies suggesting the potential role of astrocytes in brain damage following ischemic injury, the lack of knowledge of biological properties of this type of glial cell together with the virtual absence of in vivo astrocyte-specific manipulations has hampered our progress in understanding their role in pathogenesis. By examining the novel hypothesis that alterations in Ca2+ signaling within and among astrocytes induce delayed neuronal death through gliotransmission, our study will provide entirely new insights into the physiological and pathological role of astrocytes in regulating neuronal excitability and excitotoxicity. Results from this project will advance the field of glial biology and provide therapeutic avenues and targets that could potentially ameliorate neuronal death and brain damage following ischemia.
描述(由申请人提供):作为一种主要的神经系统疾病,急性脑缺血约占所有人类中风的80%,并对公众健康产生重大影响。了解病理生理学是必要的发展治疗途径,以尽量减少脑损伤。因此,该项目的目标是确定星形胶质细胞在小鼠缺血诱导的神经元死亡和脑损伤模型中的新作用。我们的中心假设是星形胶质细胞通过增强Ca2+依赖性谷氨酸释放(胶质传递)诱导神经元兴奋毒性反应,从而导致缺血诱导的神经元死亡和脑损伤。各种最先进的技术,包括2-P显微镜,电生理学,病毒转导和转基因小鼠将被用来验证这一假设。我们有三个特定的假设:1)局灶性缺血诱导缺血核心和半暗带星形胶质细胞Ca2+兴奋性增强,并介导这些胶质细胞的谷氨酸释放。利用2-P体内Ca2+成像,我们将研究缺血性区域星形细胞Ca2+信号的时空动态,并表征Ca2+振荡的特性。利用药物干预以及星形胶质细胞特异性分子遗传学方法,包括病毒转导和转基因小鼠,我们将确定光血栓形成后星形胶质细胞Ca2+兴奋性的分子基础和特性。2)星形胶质细胞在缺血后的Ca2+高兴奋性期间刺激n -甲基- d -天冬氨酸受体(NMDARs)介导的神经元兴奋。利用2-P显微镜和电生理学,我们将确定胶质传递对缺血后神经元兴奋的影响。具体来说,我们将确定星形胶质细胞在缺血后是否刺激含有NR2B-的NMDAR (NR2B-NMDAR)介导的神经元兴奋。3)星形胶质细胞通过Ca2+依赖性胶质传递加剧缺血诱导的延迟性神经元死亡和脑损伤。利用免疫组织化学和神经元死亡实验,我们将确定胶质传递在介导神经元死亡和脑损伤中的作用。此外,我们将测试NR2B-NMDARs是否参与胶质传递介导的神经元死亡。尽管有许多研究表明星形胶质细胞在缺血性脑损伤中的潜在作用,但由于缺乏对这类胶质细胞生物学特性的了解,以及体内星形胶质细胞特异性操作的缺乏,阻碍了我们了解其在发病机制中的作用。通过研究星形胶质细胞内和星形胶质细胞之间Ca2+信号的改变通过胶质传递诱导延迟神经元死亡的新假设,我们的研究将为星形胶质细胞在调节神经元兴奋性和兴奋毒性中的生理和病理作用提供全新的见解。该项目的结果将推动神经胶质生物学领域的发展,并提供可能改善缺血后神经元死亡和脑损伤的治疗途径和靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shinghua Ding其他文献
Shinghua Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shinghua Ding', 18)}}的其他基金
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
- 批准号:
10740016 - 财政年份:2023
- 资助金额:
$ 30.25万 - 项目类别:
Pathogenesis and motor neuron degeneration of a novel disease associated with a P158A mutation in NAMPT
与 NAMPT P158A 突变相关的新型疾病的发病机制和运动神经元变性
- 批准号:
10563210 - 财政年份:2022
- 资助金额:
$ 30.25万 - 项目类别:
Pathogenesis and motor neuron degeneration of a novel disease associated with a P158A mutation in NAMPT
与 NAMPT P158A 突变相关的新型疾病的发病机制和运动神经元变性
- 批准号:
10444087 - 财政年份:2022
- 资助金额:
$ 30.25万 - 项目类别:
THE ROLE AND MECHANISMS OF PBEF IN ACUTE BRAIN INJURY AND LONG-TERM STROKE OUTCOMES AFTER FOCAL ISCHEMIC STROKE
PBEF 在急性脑损伤和局灶性缺血性卒中后长期卒中结局中的作用和机制
- 批准号:
9535511 - 财政年份:2015
- 资助金额:
$ 30.25万 - 项目类别:
THE ROLE AND MECHANISMS OF PBEF IN ACUTE BRAIN INJURY AND LONG-TERM STROKE OUTCOMES AFTER FOCAL ISCHEMIC STROKE
PBEF 在急性脑损伤和局灶性缺血性卒中后长期卒中结局中的作用和机制
- 批准号:
9147010 - 财政年份:2015
- 资助金额:
$ 30.25万 - 项目类别:
The Role of Gliotransmission in Cerebral Ischemia
胶质细胞传输在脑缺血中的作用
- 批准号:
8641732 - 财政年份:2010
- 资助金额:
$ 30.25万 - 项目类别:
The Role of Gliotransmission in Cerebral Ischemia
胶质细胞传输在脑缺血中的作用
- 批准号:
8259199 - 财政年份:2010
- 资助金额:
$ 30.25万 - 项目类别:
Reactive astrocytes in neural regeneration and brain recovery after focal ischemic stroke
反应性星形胶质细胞在局灶性缺血性中风后神经再生和大脑恢复中的作用
- 批准号:
10458598 - 财政年份:2010
- 资助金额:
$ 30.25万 - 项目类别:
Reactive astrocytes in neural regeneration and brain recovery after focal ischemic stroke
反应性星形胶质细胞在局灶性缺血性中风后神经再生和大脑恢复中的作用
- 批准号:
10220140 - 财政年份:2010
- 资助金额:
$ 30.25万 - 项目类别:
The Role of Gliotransmission in Cerebral Ischemia
胶质细胞传输在脑缺血中的作用
- 批准号:
8071506 - 财政年份:2010
- 资助金额:
$ 30.25万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 30.25万 - 项目类别:
Operating Grants














{{item.name}}会员




