Phosphotyrosine signaling pathways controlling tracheal tube geometry

磷酸酪氨酸信号通路控制气管导管几何形状

基本信息

  • 批准号:
    8501610
  • 负责人:
  • 金额:
    $ 15.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-12-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The mammalian vascular system, lung, and kidney are branched tubular epithelial organs that transport gases or fluids. Although genes required for assembly of these organs have been identified, the developmental mechanisms that determine the shapes and sizes of their tubes are not well understood. The respiratory (tracheal) system of the Drosophila larva has provided a useful genetic model for the study of the development of complex branched tubular networks. Branching morphogenesis in the embryonic tracheal system is controlled by patterned interactions between a fibroblast growth factor (FGF) receptor tyrosine kinase (TK) ortholog, Breathless (Btl), and its FGF ligand, Branchless (Bnl). The developmental logic of the tracheal system is similar to that of the mammalian vascular system, where vascular sprouts expressing the vascular-endothelial growth factor (VEGF) receptor TK grow toward sources of VEGF. How are the airways in tracheal branches sculpted into the appropriate tubular shapes? We obtained an entry point into this problem when we discovered a unique tracheal phenotype caused by a double mutation eliminating both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. The Ptp4E Ptp10D double mutation converts linear unicellular tubes into spherical cysts. Type III RPTPs are highly conserved regulators of receptor TK signaling, and we found that the phenotype involves the loss of negative regulation by the RPTPs of three growth factor receptor TK orthologs: epidermal growth factor receptor (Egfr), Btl, and Pvr (VEGFR ortholog). This phenotype may have never been found in earlier genetic screens because it is only observed when both Ptp4E and Ptp10D are mutated. There may also be no single component downstream of the RPTPs that could be mutated to generate such phenotypes, since the RTKs signal through many pathways. Thus, the identification of genes that regulate tube geometry may require a sensitized genetic screen based on the Ptp4E Ptp10D phenotype. This is the basis of the first specific aim, which describes a systematic screen for recessive mutations that confer enhancement or suppression of the phenotype. Because this is a time-consuming screen, requiring quantitative analysis of individual embryos using confocal microscopy, we will reduce the numbers of lines that need to be screened by using a 'phenotypic screening kit' of deletion (Df) mutations that we have defined. For each deletion that enhances or suppresses the phenotype, we will identify the responsible gene using insertion mutations and RNAi lines, which exist for most Drosophila genes. When we have mutations in individual genes in hand, we will examine their phenotypes in detail and analyze their epistatic relationships with each other, as well as with the RTKs and RPTPs, in order to define genetic pathways. The second specific aim describes a systematic approach by which we can localize and tag the protein products of genes identified in the screen. We can attach the proteins to fluorescent markers of various colors (for localization in live and antibody-stained preparations) and to epitope tags or enzymes (for biochemical characterization). This system will allow us to find proteins that are localized t the regions of cells where tube shape is controlled. We can also analyze tyrosine phosphorylation of the proteins and determine if they physically interact with each other in the embryo.
描述(由申请人提供):哺乳动物血管系统、肺和肾是分支管状上皮器官,用于输送气体或液体。虽然组装这些器官所需的基因已经被确定,但决定其管道形状和大小的发育机制尚不清楚。果蝇幼虫的呼吸(气管)系统为研究复杂分枝管状网络的发育提供了一个有用的遗传模型。胚胎气管系统中的分支形态发生是由成纤维细胞生长因子(FGF)受体酪氨酸激酶(TK)同源物breath (Btl)与其FGF配体Branchless (Bnl)之间的模式相互作用控制的。气管系统的发育逻辑与哺乳动物血管系统相似,表达血管内皮生长因子(VEGF)受体TK的血管芽向VEGF来源生长。气管分支中的气道是如何被雕刻成适当的管状的?当我们发现一种独特的气管表型由消除III型受体酪氨酸磷酸酶(Ptp4E和Ptp10D)的双重突变引起时,我们获得了解决这个问题的切入点。Ptp4E Ptp10D双突变将线性单细胞管转化为球形囊肿。III型RPTPs是高度保守的TK受体信号调节因子,我们发现该表型涉及RPTPs对三种生长因子受体TK同源物的负调控缺失:表皮生长因子受体(Egfr)、Btl和Pvr (VEGFR同源物)。这种表型可能从未在早期的遗传筛选中发现过,因为它只在Ptp4E和Ptp10D突变时才被观察到。由于RTKs通过许多途径发出信号,因此RPTPs下游可能没有单一组分可以突变以产生这种表型。因此,鉴定调节管几何形状的基因可能需要基于Ptp4E Ptp10D表型的敏化遗传筛选。这是第一个特定目标的基础,它描述了对赋予表型增强或抑制的隐性突变的系统筛选。因为这是一个耗时的筛选,需要使用共聚焦显微镜对单个胚胎进行定量分析,我们将通过使用我们定义的缺失(Df)突变的“表型筛选试剂盒”来减少需要筛选的细胞系数量。对于每一个增强或抑制表型的缺失,我们将使用插入突变和RNAi系来确定负责基因,这些基因存在于大多数果蝇基因中。当我们手头上有单个基因的突变时,我们将详细检查它们的表型,并分析它们之间的上位性关系,以及与rtk和RPTPs之间的关系,以确定遗传途径。第二个具体目标描述了一种系统的方法,通过这种方法我们可以定位和标记在屏幕中识别的基因的蛋白质产物。我们可以将蛋白质附着在各种颜色的荧光标记物上(用于在活的和抗体染色的制剂中定位),也可以附着在表位标签或酶上(用于生化表征)。这个系统将使我们能够找到定位于细胞管形控制区域的蛋白质。我们还可以分析酪氨酸磷酸化的蛋白质,并确定它们是否在胚胎中相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAI G ZINN其他文献

KAI G ZINN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAI G ZINN', 18)}}的其他基金

Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
  • 批准号:
    10176503
  • 财政年份:
    2018
  • 资助金额:
    $ 15.66万
  • 项目类别:
Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
  • 批准号:
    10405482
  • 财政年份:
    2018
  • 资助金额:
    $ 15.66万
  • 项目类别:
Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
  • 批准号:
    9752626
  • 财政年份:
    2018
  • 资助金额:
    $ 15.66万
  • 项目类别:
Regulation of synaptic targeting in the Drosophila larval neuromuscular system by immunoglobulin superfamily cell surface proteins
免疫球蛋白超家族细胞表面蛋白对果蝇幼虫神经肌肉系统突触靶向的调节
  • 批准号:
    10011886
  • 财政年份:
    2016
  • 资助金额:
    $ 15.66万
  • 项目类别:
Identifying New Regulators of Leptin-Like Signaling in Drosophila Brain Neurons
鉴定果蝇脑神经元中瘦素样信号传导的新调节因子
  • 批准号:
    8563793
  • 财政年份:
    2013
  • 资助金额:
    $ 15.66万
  • 项目类别:
Identifying New Regulators of Leptin-Like Signaling in Drosophila Brain Neurons
鉴定果蝇脑神经元中瘦素样信号传导的新调节因子
  • 批准号:
    8653630
  • 财政年份:
    2013
  • 资助金额:
    $ 15.66万
  • 项目类别:
Phosphotyrosine signaling pathways controlling tracheal tube geometry
磷酸酪氨酸信号通路控制气管导管几何形状
  • 批准号:
    8348650
  • 财政年份:
    2012
  • 资助金额:
    $ 15.66万
  • 项目类别:
Synaptic target selection in Drosophila
果蝇的突触目标选择
  • 批准号:
    8021786
  • 财政年份:
    2009
  • 资助金额:
    $ 15.66万
  • 项目类别:
Synaptic target selection in Drosophila
果蝇的突触目标选择
  • 批准号:
    8019193
  • 财政年份:
    2009
  • 资助金额:
    $ 15.66万
  • 项目类别:
Synaptic target selection in Drosophila
果蝇的突触目标选择
  • 批准号:
    7656470
  • 财政年份:
    2009
  • 资助金额:
    $ 15.66万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
  • 批准号:
    10639161
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
  • 批准号:
    10752441
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
  • 批准号:
    10867639
  • 财政年份:
    2023
  • 资助金额:
    $ 15.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了