Synaptic target selection in Drosophila
果蝇的突触目标选择
基本信息
- 批准号:8021786
- 负责人:
- 金额:$ 43.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntibodiesAutistic DisorderAxonBackBasic ScienceBinding ProteinsBinding SitesBirthBrainCell surfaceCellsCollectionComplementary DNAComplexConfocal MicroscopyCuesDatabasesDevelopmentDiseaseDrosophila genusElementsEmbryoEventExtracellular DomainFamilyGenesGeneticGenetic ScreeningHealthHumanIndividualInsulinInsulin Signaling PathwayInsulin-Like Growth Factor IInvertebratesKnowledgeLabelLarvaLeucine-Rich RepeatLinkMapsMethodsMotorMotor NeuronsMuscleMuscle FibersMutationNatureNeuromuscular JunctionNeuronsOrthologous GenePaperPatternPenetrancePhenotypePhosphotransferasesProtein FamilyProteinsRNA InterferenceResearch PersonnelResearch Project GrantsSchizophreniaSignal PathwaySpecificityStaining methodStainsSynapsesSystemTissuesWorkaxon guidancegain of functioninsulin signalinginterestknock-downleucine-rich repeat proteinloss of functionmembermuscular structurenerve supplyneuromuscular systemnull mutationoverexpressionpostsynapticprotein functionreceptorresearch studyselective expression
项目摘要
DESCRIPTION (provided by applicant): Genetic screens in Drosophila identified many of the cell-surface and secreted (CSS) proteins that are intensively studied today as regulators of axon guidance in both vertebrate and invertebrate systems. This proposal describes a genetic screen for CSS proteins that function as synaptic target labels in the embryonic/larval neuromuscular system. This system is ideal for examination of target labeling mechanisms, because it contains only 36 motor neurons and 30 muscle targets and has an invariant innervation pattern. Each identified motor neuron innervates a specific muscle fiber. Although many genes that regulate axon guidance in this system have been identified, we know very little about how individual muscle fibers are recognized as targets by motor axons. To address this problem, we first defined CSS proteins that cause axonal mistargeting when they are overexpressed on all muscle fibers. We did this by constructing a database of all genes in Drosophila that encode CSS proteins likely to be involved in cell recognition events. We then searched through all the existing collections of UAS (GAL4 binding site)-containing ('EP-like') element lines to find insertions immediately upstream of these CSS genes that could be used to confer tissue-specific, high-level expression by crossing them to GAL4 "driver" lines. We obtained EP-like insertions that can drive 410 of the 979 genes in the database, or over 40% of the putative cell recognition repertoire. We crossed each line to a pan-muscle GAL4 driver and examined F1 progeny larvae by antibody staining and confocal microscopy. We found 30 genes whose expression on all muscles causes high-penetrance axonal mistargeting phenotypes but does not perturb muscle structure. Six of the genes are in a specific family encoding proteins with extracellular domains containing leucine-rich repeats (LRRs), which are protein interaction modules. This proposal describes experiments to assess the functions of four LRR proteins that are expressed in muscles and appear to function as synaptic target labels, and to determine if the LRR family encodes additional target labels. The first specific aim concerns the Tartan (Trn) and Capricious (Caps) proteins. Loss-of- function phenotypes for trn and caps suggest that they function in a partially redundant manner in the embryo. In larvae, selective expression of Trn or Caps on muscle 12 only produces alterations in targeting specificity. We will determine the loss-of-function (LOF) larval phenotypes generated by knockdown of both Trn and Caps in a single muscle or in all muscles. We will also attempt to develop a method for labeling single motor axons in larvae, so that we can observe how genetic perturbations affect targeting of individual identified axons. Specific aims 2 and 3 concern two "new genes", CG14351/haf and CG8561. We have used genetic and RNAi analysis to show that the proteins encoded by these genes are required for the normal innervation of ventrolateral muscles. We will make null mutations in these genes and conduct a genetic interaction screen to find components of the CG14351/Haf signaling pathway. We will also determine whether CG8561, the ortholog of a mammalian IGF-1 binding protein, is a component of the insulin/IGF-1 signaling pathway. The final specific aim describes experiments to examine the entire LRR family to determine if it encodes other muscle target labels. To do this, we will make UAS-cDNA constructs and obtain or make RNAi lines for 41 LRR genes and assess their phenotypes in larvae. For all genes producing phenotypes, we will then make a map of their expression patterns in muscle fibers during the period of axonal outgrowth. This information will allow us to begin to combine LRR protein perturbations, knocking down multiple genes on specific muscles, in order to examine whether muscle fibers are labeled for targeting by expression of specific ensembles of LRR proteins. PUBLIC HEALTH RELEVANCE: This is a basic research project to discover mechanisms involved in creation of neuronal circuits during development. Although the work is conducted in Drosophila, most of the genes we are studying have human counterparts. We hope to reveal general principles that will facilitate an understanding of how human brain wiring is controlled before and after birth. Knowledge about wiring mechanisms may help researchers to understand diseases in which neuronal connectivity patterns are altered. These include schizophrenia and autism.
描述(由申请人提供):果蝇的遗传筛选鉴定了许多细胞表面和分泌(CSS)蛋白,这些蛋白在脊椎动物和无脊椎动物系统中作为轴突引导的调节因子被广泛研究。本提案描述了CSS蛋白在胚胎/幼虫神经肌肉系统中作为突触靶标记的遗传筛选。该系统是理想的检查目标标记机制,因为它只包含36个运动神经元和30个肌肉目标,并具有不变的神经支配模式。每一个确定的运动神经元支配一个特定的肌肉纤维。虽然在这个系统中许多调节轴突引导的基因已经被确定,但我们对单个肌肉纤维如何被运动轴突识别为目标知之甚少。为了解决这个问题,我们首先定义了CSS蛋白,当它们在所有肌肉纤维上过表达时,会导致轴突错误靶向。我们通过构建果蝇中编码CSS蛋白的所有基因的数据库来实现这一目标,这些蛋白可能参与细胞识别事件。然后,我们搜索了所有现有的含有UAS (GAL4结合位点)的(“ep样”)元素系,以找到这些CSS基因上游的插入,这些插入可以通过将它们交叉到GAL4“驱动”系中来赋予组织特异性的高水平表达。我们获得了类似ep的插入物,可以驱动数据库中979个基因中的410个,或超过40%的假定细胞识别库。我们将每条线交叉到泛肌GAL4驱动基因上,通过抗体染色和共聚焦显微镜检查F1后代幼虫。我们发现了30个基因,它们在所有肌肉中的表达导致高外显率轴突错靶表型,但不会扰乱肌肉结构。其中6个基因在一个特定的家族中,编码含有富含亮氨酸重复序列(lrr)的细胞外结构域的蛋白质,这是蛋白质相互作用模块。该提案描述了评估在肌肉中表达的四种LRR蛋白功能的实验,并确定LRR家族是否编码其他目标标签。第一个具体目标涉及格子蛋白(Trn)和任性蛋白(Caps)。trn和caps的功能缺失表型表明它们在胚胎中以部分冗余的方式起作用。在幼虫中,Trn或Caps在肌肉12上的选择性表达只会产生靶向特异性的改变。我们将确定在单个肌肉或所有肌肉中Trn和Caps敲低所产生的功能丧失(LOF)幼虫表型。我们还将尝试开发一种标记幼虫单个运动轴突的方法,以便我们可以观察遗传扰动如何影响单个已识别轴突的靶向性。具体目标2和3涉及两个“新基因”,CG14351/haf和CG8561。我们使用遗传和RNAi分析表明,这些基因编码的蛋白质是腹侧肌正常神经支配所必需的。我们将对这些基因进行零突变,并进行遗传互作筛选,寻找CG14351/Haf信号通路的组分。我们还将确定CG8561(哺乳动物IGF-1结合蛋白的同源物)是否是胰岛素/IGF-1信号通路的一个组成部分。最后的具体目标描述了检查整个LRR家族的实验,以确定它是否编码其他肌肉目标标签。为此,我们将构建UAS-cDNA构建体,获得或制作41个LRR基因的RNAi系,并评估其在幼虫中的表型。对于所有产生表型的基因,我们将绘制出它们在轴突生长期间在肌纤维中的表达模式图。这些信息将允许我们开始结合LRR蛋白的扰动,敲除特定肌肉上的多个基因,以检查肌肉纤维是否被标记为通过表达特定的LRR蛋白集合来靶向。公共卫生相关性:这是一项基础研究项目,旨在发现发育过程中神经元回路形成的机制。虽然这项工作是在果蝇身上进行的,但我们研究的大多数基因都有人类的对应基因。我们希望揭示一般的原理,这将有助于理解人类大脑在出生前后是如何控制的。有关神经连接机制的知识可能有助于研究人员了解神经元连接模式改变的疾病。其中包括精神分裂症和自闭症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAI G ZINN其他文献
KAI G ZINN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAI G ZINN', 18)}}的其他基金
Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
- 批准号:
10176503 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
- 批准号:
10405482 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
Cell Surface Protein Interactions Controlling Photoreceptor Synaptic Targeting and Amacrine Cell Fate in the Drosophila Visual System
控制果蝇视觉系统中光感受器突触靶向和无长突细胞命运的细胞表面蛋白相互作用
- 批准号:
9752626 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
Regulation of synaptic targeting in the Drosophila larval neuromuscular system by immunoglobulin superfamily cell surface proteins
免疫球蛋白超家族细胞表面蛋白对果蝇幼虫神经肌肉系统突触靶向的调节
- 批准号:
10011886 - 财政年份:2016
- 资助金额:
$ 43.3万 - 项目类别:
Identifying New Regulators of Leptin-Like Signaling in Drosophila Brain Neurons
鉴定果蝇脑神经元中瘦素样信号传导的新调节因子
- 批准号:
8563793 - 财政年份:2013
- 资助金额:
$ 43.3万 - 项目类别:
Identifying New Regulators of Leptin-Like Signaling in Drosophila Brain Neurons
鉴定果蝇脑神经元中瘦素样信号传导的新调节因子
- 批准号:
8653630 - 财政年份:2013
- 资助金额:
$ 43.3万 - 项目类别:
Phosphotyrosine signaling pathways controlling tracheal tube geometry
磷酸酪氨酸信号通路控制气管导管几何形状
- 批准号:
8348650 - 财政年份:2012
- 资助金额:
$ 43.3万 - 项目类别:
Phosphotyrosine signaling pathways controlling tracheal tube geometry
磷酸酪氨酸信号通路控制气管导管几何形状
- 批准号:
8501610 - 财政年份:2012
- 资助金额:
$ 43.3万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.3万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




