Understanding metabolic flux and the control of mammalian cell growth
了解代谢通量和哺乳动物细胞生长的控制
基本信息
- 批准号:8354288
- 负责人:
- 金额:$ 23.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2016-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismBiochemicalBiochemical PathwayBiochemistryBioinformaticsBiologicalBiological ProcessCancer BiologyCancer Cell GrowthCarbonCell ProliferationCellsCellular biologyCommitComputer SimulationComputing MethodologiesDevelopmentDiseaseDivingEnergy MetabolismFacultyGeneticGenetic TranscriptionGlucoseGlycolysisGoalsGrowthGrowth FactorGrowth and Development functionHumanHuman DevelopmentHuman bodyInnovative TherapyInterventionIsotope LabelingLaboratoriesLeadMalignant NeoplasmsMammalian CellMass Spectrum AnalysisMeasurementMeasuresMentorsMetabolicMetabolic PathwayMetabolismMolecularMutationNatureNormal tissue morphologyNutritional RequirementsOncogenicPathway interactionsPhasePlant RootsPrimary NeoplasmProductionProliferatingPropertyRNA BiochemistryRNA InterferenceRecurrenceRegulationResearchRoleRouteSerineSignal TransductionSignal Transduction PathwaySourceSpecificitySystems BiologyTechniquesTechnologyTimeTissuesTrainingWorkbasecancer cellcell growthdriving forceenzyme activitygene discoveryglucose metabolismglucose uptakehigh throughput technologyhuman mortalityinterdisciplinary approachmathematical modelmetabolomicsnew technologynovelpost-doctoral trainingprogramspublic health relevanceresearch studyskillssmall moleculetumortumor growthtumor metabolismtumor progressionuncontrolled cell growth
项目摘要
DESCRIPTION (provided by applicant): Cancers are diseases of uncontrolled cell growth in which cells acquire mutations that lead to cell proliferation outside of the context of normal tissue development. Molecular advances over the past 30 years have characterized many of the signal transduction pathways and gene transcription networks that are altered during cancer progression. Aberrant regulation of these networks invariably results in gross alterations of the metabolic network. Differences in the metabolism of glucose in tumors compared to that of normal tissue have been noted for over 70 years; yet, the origins, consequences, cancer specificities, and the principles of intervention are poorly understood. Our understanding of cancer cell metabolism is challenged by the enormous complexity of the interaction between metabolic pathways and the genetic aberrations that alter these pathways. Advances will require new technologies and conceptual frameworks, such as high-throughput metabolomics, a technique that aims to quantify within a single measurement, a large number of small-molecules within cells and tissues, and mathematical models that can parse the effects of many simultaneous interactions. Investing such effort has the potential to fundamentally alter our understanding of basic cancer biology and lead to innovative therapies. My proposed research focuses on this central problem of cancer cell growth and development and utilizes the application of computational methods rooted in systems biology in conjunction with the use high-throughput technologies such as mass spectrometry-based metabolomics to understand mechanisms that lead to unregulated growth and altered metabolism in cancer cells and primary tumors. During my postdoctoral work, I discovered two novel metabolic pathways in cells undergoing rapid proliferation and tumor development. These studies combined metabolomics technology with techniques I acquired in my postdoctoral training involving cell biology, biochemistry and genetics. One pathway involves an alternate route of glucose uptake that decouple catabolic glucose metabolism with energy metabolism. The other involves the diversion of glycolytic flux into anabolic metabolism through a glycolytic intermediate. Further genetic studies established that this pathway is selected for in the development of human cancer. I will continue these projects during the remainder of my postdoctoral training in the mentored phase. This work will allow me to establish an independent research program involving using systems biology techniques to investigate define biological problems in understanding the role of glucose metabolism in cancer. My previous training in systems biology and current training in a leading cancer biology and signal transduction lab provides a skill-set that is uniquely suited to approach this problem.
描述(由申请人提供):癌症是细胞生长不受控制的疾病,其中细胞获得突变,导致细胞增殖超出正常组织发育的范围。在过去的30年里,分子生物学的进步揭示了许多信号转导通路和基因转录网络在癌症进展过程中发生改变的特征。这些网络的异常调节必然导致代谢网络的总体改变。与正常组织相比,肿瘤中葡萄糖代谢的差异已经被注意了70多年;然而,人们对其起源、后果、癌症特异性和干预原则知之甚少。我们对癌细胞代谢的理解受到代谢途径和改变这些途径的遗传畸变之间相互作用的巨大复杂性的挑战。进步将需要新的技术和概念框架,例如高通量代谢组学,一种旨在在一次测量中量化的技术,细胞和组织中的大量小分子,以及可以解析许多同时相互作用的影响的数学模型。投入这样的努力有可能从根本上改变我们对基本癌症生物学的理解,并带来创新的治疗方法。我提出的研究重点是癌细胞生长和发育的核心问题,并利用植根于系统生物学的计算方法的应用,结合使用高通量技术,如基于质谱的代谢组学,来了解导致癌细胞和原发性肿瘤中不受调节的生长和代谢改变的机制。在我的博士后工作中,我在快速增殖和肿瘤发展的细胞中发现了两条新的代谢途径。这些研究将代谢组学技术与我在博士后培训中获得的涉及细胞生物学、生物化学和遗传学的技术相结合。一种途径涉及葡萄糖摄取的另一种途径,即分解代谢葡萄糖代谢与能量代谢分离。另一种涉及糖酵解通量通过糖酵解中间体转入合成代谢。进一步的遗传研究证实,这一途径在人类癌症的发展中是被选择的。我将在博士后培训的剩余时间内继续这些项目。这项工作将使我能够建立一个独立的研究项目,涉及使用系统生物学技术来调查定义生物学问题,以了解葡萄糖代谢在癌症中的作用。我之前在系统生物学方面的培训,以及目前在一个领先的癌症生物学和信号转导实验室的培训,提供了一套独特适合解决这个问题的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason W. Locasale其他文献
Methionine metabolism in health and cancer: a nexus of diet and precision medicine
健康与癌症中的蛋氨酸代谢:饮食与精准医学的联系
- DOI:
10.1038/s41568-019-0187-8 - 发表时间:
2019-09-12 - 期刊:
- 影响因子:66.800
- 作者:
Sydney M. Sanderson;Xia Gao;Ziwei Dai;Jason W. Locasale - 通讯作者:
Jason W. Locasale
A toxin that fuels metabolism
一种促进新陈代谢的毒素
- DOI:
10.1038/nature23541 - 发表时间:
2017-08-16 - 期刊:
- 影响因子:48.500
- 作者:
Xiaojing Liu;Jason W. Locasale - 通讯作者:
Jason W. Locasale
Metabolic Adaptation to Tyrosine Kinase Inhibition in Chronic Myelogenous Leukemia Stem Cells
- DOI:
10.1182/blood-2022-156631 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Shaowei Qiu;Vipul Sheth;Chengcheng Yan;Juan Liu;Balu K. Chacko;Hui Li;David Crossman;Seth D. Fortmann;Sajesan Aryal;Maria B. Grant;Robert S. Welner;Andrew J. Paterson;Adam R. Wende;Victor M Darley-Usmar;Rui Lu;Jason W. Locasale;Ravi Bhatia - 通讯作者:
Ravi Bhatia
Jason W. Locasale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason W. Locasale', 18)}}的其他基金
Metabolic Reprogramming of Colon Cancer Liver Metastasis
结肠癌肝转移的代谢重编程
- 批准号:
9205492 - 财政年份:2016
- 资助金额:
$ 23.36万 - 项目类别:
Understanding metabolic flux and the control of mammalian cell growth
了解代谢通量和哺乳动物细胞生长的控制
- 批准号:
9168188 - 财政年份:2015
- 资助金额:
$ 23.36万 - 项目类别:
Characterization of the SGOC metabolic network in cancer pathogenesis
癌症发病机制中 SGOC 代谢网络的表征
- 批准号:
9127204 - 财政年份:2015
- 资助金额:
$ 23.36万 - 项目类别:
Understanding metabolic flux and the control of mammalian cell growth
了解代谢通量和哺乳动物细胞生长的控制
- 批准号:
8824764 - 财政年份:2013
- 资助金额:
$ 23.36万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 23.36万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 23.36万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 23.36万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 23.36万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 23.36万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 23.36万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 23.36万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 23.36万 - 项目类别:
Discovery Early Career Researcher Award