Reversing Tolerogenicity of Tumor Associated Dendritic Cells to Enhance Anti-Tumo
逆转肿瘤相关树突状细胞的耐受原性以增强抗肿瘤能力
基本信息
- 批准号:8548098
- 负责人:
- 金额:$ 23.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-19 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adoptive TransferAffectAndrogen ReceptorAndrogensAnimalsAwardBinding SitesBiochemicalBiopsyCD8B1 geneCell Cycle RegulationCell physiologyCellsCessation of lifeCollaborationsComplementComplexDataDefectDendritic CellsEstrogen ReceptorsEstrogensFOXO1A geneFOXO3A geneFemaleFertilityFutureGenderGene TargetingGoalsGrowth FactorHigh Pressure Liquid ChromatographyHormone ReceptorHormonesHumanImmuneImmune Cell ActivationImmune ToleranceImmune responseImmune systemImmunologyImmunotherapyInfertilityInfiltrationInflammatory ResponseInvestigationKnowledgeLaboratoriesLigandsLigationLinkLymphoid TissueMalignant NeoplasmsMalignant neoplasm of prostateMast Cell NeoplasmMediatingMelanoma CellMentorsMethodsModelingMolecularMusMutationNF-kappa BNuclear TranslocationPartner in relationshipPatientsPeripheralPhasePopulationPositioning AttributePremature Ovarian FailureProcessPromoter RegionsProstateProstatic NeoplasmsProteinsPublicationsRegulationRenal Cell CarcinomaReportingResearchResearch PersonnelResourcesRoleScientistSex BiasSex CharacteristicsSignal TransductionT-LymphocyteTechniquesTechnologyTestingTimeTrainingTumor AntigensTumor ImmunityTumor Suppressor GenesWomanWorkanticancer researchcancer therapycancer typecareercytokinefallshuman diseaseimmunogenicityinterestloss of functionmalemast cellmeetingsmelanomamenneoplastic cellnovelpreventprogramsresponsesuccesssymposiumtraffickingtranscription factortumortumor growthtumor microenvironment
项目摘要
It is well established that upon adoptive transfer of Ag specific CD8+ T cells into prostate tumor
bearing (TRAMP) mice, the T cells become activated in the peripheral lymphoid tissues, a sub-
population of these cells then traffic to the prostate and where they rapidly become tolerized. To study
the mechanisms by which T cells become tolerized in the prostate, our research is focused on the
interactions between tumor infiltrating T cells and tumor associated DCs (TADCs). Our recent
publications in Cancer Research and The JCI along with our preliminary data herein show that prostate
TADCs, but not normal prostate DCs, induce tolerance and suppressive activity in T cells.
Furthermore, this induction of tolerance is regulated by DC and the expression of the FOXO3 protein.
Importantly, these results were found to be translational to human disease. Tolerance induced by
TADC isolated from human tumor biopsies was also found to be regulated by increased DC expression
of FOXO3. Therefore, the proposed research will determine two critical mechanisms in FOXO3
expression and control of DC function; 1) the regulation of FOXO3 expression in DC by tumor produced
factors and tumor infiltrating suppressive cells and 2) the mechanism through which FOXO3 induces
tolerogenic function in DC.
To achieve the proposed aims state of the art technology such as HPLC and mass spectometry
will be used for the identification of proteins produced by tumors to induce FOXO3 expression and
tolerogenic activity in DC. A second novel mechanism will be tested characterizing the interaction
between DC and tumor infiltrating suppressive mast cells in maintaining suppressive DC in the tumor
microenvironment. The mechanisms that regulate DC function particularly though FOXO3 interactions
with proteins including, WNT/b-catenin, and androgen and estrogen receptors (AR & ER) will be
extensively tested and characterized. Interestingly, our preliminary data demonstrate that there may be
differential mechanisms by which FOXO3 induces tolerance in males and females. Silencing Foxo3 in
female patients may have a detrimental effect as immune cells did not infiltrate tumors and tumors grew
more rapidly in these mice. Therefore the influence of FOXO3 and signaling through the hormone axis
will be tested.
Several murine tumor models including prostate, melanoma and renal cell carcinomas will be
used to test induction of FOXO3 regulated DC tolerance across difference types of cancer and animal
work will be complemented by studies performed in DC isolated from human tumors. Completion of this
study will provide new and novel specific targets in tumors and DC to enhance immune therapy.
Furthermore, the characterization of the role of FOXO3 in controlling the activation of hormone
receptors to regulate immune cell activation by gender associated mechanisms may be critical for
determining immune therapies to be used for cancers in men and women.
In addition to the scientific merit of this application, the candidate has proposed outstanding yet
achievable career goals. In the short term the candidate attend classes to enhance understanding of
molecular techniques, the process of acquiring an independent research position, transitioning to
independence, and how to set up and manage a laboratory. She will continue to participate in
seminars, and conferences to present data, continue to build upon her knowledge of immunology and
establish networks of collaborators to assist in current and future studies. Additionally, a mutually
agreed upon training plan and plan for transitioning to independence has been provided by both the
candidate and mentor. For long term career goals the candidate has provided a clear step by step
approach to successfully become an independent academic scientist. The receipt of this award will
enhance both scientific aspects by furthering the research to identify potential targets to enhance
immune therapy for cancer and for the advancement of the candidate's career by providing additional
time and resources to attend classes and meetings that will assist in the building of collaborations and a
successful research program. Specifically, the data generated during the R00 phase of the award will
provide the groundwork for the candidate to apply for an R01 by the end of her second year as an
independent investigator.
已经证实,通过过继转移Ag特异性CD8+ T细胞进入前列腺肿瘤
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Kaye Watkins其他文献
Stephanie Kaye Watkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Kaye Watkins', 18)}}的其他基金
Reversing Tolerogenicity of Tumor Associated Dendritic Cells to Enhance Anti-Tumo
逆转肿瘤相关树突状细胞的耐受原性以增强抗肿瘤能力
- 批准号:
8725600 - 财政年份:2012
- 资助金额:
$ 23.41万 - 项目类别:
Reversing Tolerogenicity of Tumor Associated Dendritic Cells to Enhance Anti-Tumo
逆转肿瘤相关树突状细胞的耐受原性以增强抗肿瘤能力
- 批准号:
8529114 - 财政年份:2012
- 资助金额:
$ 23.41万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 23.41万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 23.41万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 23.41万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 23.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists