Bar Domains and Neuronal Membrane Structure

Bar 结构域和神经元膜结构

基本信息

  • 批准号:
    8325094
  • 负责人:
  • 金额:
    $ 27.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of the proposed work is to systematically explore whether and how proteins that sense and shape the curvature of plasma membranes are responsible for building the intricate dendritic and axonal arbors that distinguish neurons from other cell types. The formation of complex 3-dimensional branched membrane structures is one of the most fundamental properties of neurons that enable them to transmit information between neurons and from neurons to other cell types. The ability of selected proteins to sense membrane curvature during this differentiation process is important as defects in proteins, such as Oligophrenin and srGAP2, that can bind to and shape lipid membranes cause neurodegenerative diseases. Our proposal aims to develop and execute a scalable experimental strategy to understand the process of arbor formation by focusing on a family of Bar domain containing proteins that are known from in vitro studies to be able to bind to and shape curved membranes. We will systematically investigate their function in generating the branched extended plasma membrane architecture of neurons. Currently available in vitro assays and structural studies of proteins with membrane binding domains can determine the radius of the membrane curvature that results from the formation of oligomers by curvature sensing proteins. Using this approach, proteins have been identified that sense and shape membranes with positive and negative curvatures. Nevertheless, it is difficult from these assays to know to which curved intracellular membranes these proteins may bind, and if or how they act dynamically to generate distinct types of curved plasma membranes in a living cell. We developed a novel assay to investigate curvature dependent processes that is based on fabricated nanostructures that trigger plasma membrane curvature in living cells. Specifically, our project will deliver a new scalable assay based on these nanostructures that allows one to measure in living cells the intracellular membrane localization and the curvature preference as well as the dynamic assembly, disassembly and exchange rate of curvature sensing membrane binding proteins. Our initial studies already identified and characterized a key regulator that binds to positively curved plasma membranes and is critically involved in controlling neuronal architecture. We have combined this approach with parallel high-throughput live-cell imaging and automated image analysis of cultured hippocampal neurons that enables us to systematically analyze the cellular roles of these same Bar domain binding proteins in controlling the neuronal architecture. At the center of our work is the development of this synergistic dual experimental approach that can ultimately be used as an unbiased and systematic platform to investigate the neuronal roles of a large number of putative neuronal membrane binding proteins. Together, our project will provide a molecular framework to understand the program used by neurons to create the vast repertoire of different neuronal architectures.
描述(申请人提供):这项拟议工作的目标是系统地探索感知和塑造质膜曲率的蛋白质是否以及如何负责构建复杂的树突和轴突,将神经元与其他类型的细胞区分开来。复杂的三维分支膜结构的形成是神经元最基本的特性之一,使它们能够在神经元之间以及从神经元到其他类型的细胞之间传递信息。在这个分化过程中,所选择的蛋白质感知膜弯曲的能力是重要的,因为蛋白质中的缺陷,如寡聚精神蛋白和SRGAP2,可以结合到脂膜并塑造脂膜,会导致神经退行性疾病。我们的建议旨在开发和执行一种可扩展的实验策略,通过专注于一系列包含Bar结构域的蛋白质来了解Arbor的形成过程,这些蛋白质从体外研究中已知能够与弯曲的膜结合并形成形状。我们将系统地研究它们在产生神经元分枝延伸的质膜结构中的作用。目前可用的具有膜结合结构域的蛋白质的体外分析和结构研究可以确定由曲率感应蛋白质形成的低聚物所产生的膜曲率半径。利用这种方法,已经鉴定出具有正曲率和负曲率的感觉和形成膜的蛋白质。然而,从这些分析中很难知道这些蛋白质可能结合到哪些弯曲的细胞内膜上,以及它们是否或如何动态地在活细胞中产生不同类型的弯曲质膜。我们开发了一种新的方法来研究曲率依赖的过程,这是基于制造的纳米结构,触发活细胞的质膜弯曲。具体地说,我们的项目将提供一种基于这些纳米结构的新的可扩展的分析方法,使人们能够在活细胞中测量细胞内膜的定位和曲率偏好,以及曲率感应膜结合蛋白的动态组装、拆解和交换率。我们的初步研究已经确定并表征了一个关键的调节因子,该调节因子结合到正弯曲的质膜上,并在控制神经元结构方面发挥关键作用。我们将这种方法与并行高通量活细胞成像和培养的海马神经元的自动图像分析相结合,使我们能够系统地分析这些相同的Bar结构域结合蛋白在控制神经元结构中的细胞角色。我们工作的中心是发展这种协同的双重实验方法,最终可以作为一个公正和系统的平台来研究大量假定的神经细胞膜结合蛋白的神经元作用。总之,我们的项目将提供一个分子框架,以理解神经元用来创建不同神经元结构的大量曲目的程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOBIAS MEYER其他文献

TOBIAS MEYER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOBIAS MEYER', 18)}}的其他基金

Cell Signaling and Cell Decisions
细胞信号传导和细胞决策
  • 批准号:
    10393574
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
Cell Signaling and Cell Decisions
细胞信号传导和细胞决策
  • 批准号:
    10292339
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
Cell Signaling and Cell Decisions
细胞信号传导和细胞决策
  • 批准号:
    9912173
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
Cell Signaling and Cell Decisions
细胞信号传导和细胞决策
  • 批准号:
    10560042
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
Decision points to enter and exit the human cell cycle
进入和退出人体细胞周期的决策点
  • 批准号:
    9270039
  • 财政年份:
    2016
  • 资助金额:
    $ 27.42万
  • 项目类别:
CV7000
CV7000
  • 批准号:
    8640626
  • 财政年份:
    2014
  • 资助金额:
    $ 27.42万
  • 项目类别:
2011 Gradient Sensing and Directed Cell Migration Gordon Research Conference
2011 梯度传感和定向细胞迁移戈登研究会议
  • 批准号:
    8128064
  • 财政年份:
    2011
  • 资助金额:
    $ 27.42万
  • 项目类别:
Control of Hedgehog Signal Transduction by Neuropilin
Neuropilin 对 Hedgehog 信号转导的控制
  • 批准号:
    8620669
  • 财政年份:
    2011
  • 资助金额:
    $ 27.42万
  • 项目类别:
Bar Domains and Neuronal Membrane Structure
Bar 结构域和神经元膜结构
  • 批准号:
    8470247
  • 财政年份:
    2011
  • 资助金额:
    $ 27.42万
  • 项目类别:
Bar Domains and Neuronal Membrane Structure
Bar 结构域和神经元膜结构
  • 批准号:
    8679000
  • 财政年份:
    2011
  • 资助金额:
    $ 27.42万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 27.42万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了