Developing a genomic approach for cancer screening

开发癌症筛查的基因组方法

基本信息

  • 批准号:
    8572632
  • 负责人:
  • 金额:
    $ 240.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Early detection of cancer via screening has been shown to lead to improved survival for several common malignancies. However, screening comes with significant risks and expenses. One important issue faced by all screening tests is detecting as many cancers as possible while minimizing identification of false positives. False positive screening results induce anxiety in patients and their families, require additional expensive tests, and may result in harm if a follow-up study leads to a complication. We propose to develop a novel, genomic approach for cancer screening that leverages insights gained from high throughput re-sequencing of cancer genomes. We will develop this method in the context of lung cancer, since it is the number one cause of cancer deaths and since low dose computed tomography (CT) screening has recently been shown to produce significant survival benefits in high-risk patients. However, ~95% of positive screening results from low dose CT lung cancer screenings are false positives and so improvements are clearly needed. This proposal describes our plan to develop, optimize, and test our method. We will perform both pre-clinical and clinical evaluations and will test our approach in multiple settings, includig as a secondary screening procedure for differentiating between true positive and false positive screening results and as a primary screening modality. Importantly, the method is readily extendable to any cancer for which high throughout sequencing data are available and we envision ultimately being able to screen for most common cancers using a single assay.
描述(由申请人提供):通过筛查早期发现癌症已被证明可以改善几种常见恶性肿瘤的生存率。然而,筛查伴随着巨大的风险和费用。所有筛查测试面临的一个重要问题是检测尽可能多的癌症,同时最大限度地减少假阳性的识别。假阳性筛查结果会引起患者及其家属的焦虑,需要额外的昂贵测试,如果后续研究导致并发症,可能会导致伤害。我们建议开发一种新的基因组方法用于癌症筛查,该方法利用从癌症基因组的高通量重新测序中获得的见解。我们将在肺癌的背景下开发这种方法,因为它是癌症死亡的头号原因,并且最近已证明低剂量计算机断层扫描(CT)筛查对高风险患者的生存有显着的益处。然而,低剂量CT肺癌筛查中约95%的阳性筛查结果是假阳性,因此显然需要改进。该提案描述了我们开发、优化和测试方法的计划。我们将进行临床前和临床评估,并将在多种环境中测试我们的方法,包括作为区分真阳性和假阳性筛查结果的二级筛查程序以及作为初级筛查模式。重要的是,该方法很容易扩展到任何癌症,其中高通量测序数据是可用的,我们设想最终能够使用单一测定筛选最常见的癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maximilian Diehn其他文献

Maximilian Diehn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maximilian Diehn', 18)}}的其他基金

Molecular Strategies to Widen the Therapeutic Index of Radiotherapy
扩大放射治疗治疗指数的分子策略
  • 批准号:
    10334198
  • 财政年份:
    2022
  • 资助金额:
    $ 240.75万
  • 项目类别:
Project 3: Targeting KEAP1-Mediated Radioresistance in Lung Cancer
项目 3:靶向 KEAP1 介导的肺癌放射抗性
  • 批准号:
    10707897
  • 财政年份:
    2022
  • 资助金额:
    $ 240.75万
  • 项目类别:
Molecular Strategies to Widen the Therapeutic Index of Radiotherapy
扩大放射治疗治疗指数的分子策略
  • 批准号:
    10707879
  • 财政年份:
    2022
  • 资助金额:
    $ 240.75万
  • 项目类别:
Project 3: Targeting KEAP1-Mediated Radioresistance in Lung Cancer
项目 3:靶向 KEAP1 介导的肺癌放射抗性
  • 批准号:
    10334201
  • 财政年份:
    2022
  • 资助金额:
    $ 240.75万
  • 项目类别:
Imaging and circulating DNA markers to assess early response and predict treatment failure patterns in lung cancer
成像和循环 DNA 标记物可评估肺癌的早期反应并预测治疗失败模式
  • 批准号:
    10330010
  • 财政年份:
    2019
  • 资助金额:
    $ 240.75万
  • 项目类别:
Imaging and circulating DNA markers to assess early response and predict treatment failure patterns in lung cancer
成像和循环 DNA 标记物可评估肺癌的早期反应并预测治疗失败模式
  • 批准号:
    10556345
  • 财政年份:
    2019
  • 资助金额:
    $ 240.75万
  • 项目类别:
Rescuing Nucleic Acids from Formalin Damage in Cancer Specimens
拯救癌症样本中的核酸免受福尔马林损伤
  • 批准号:
    9347256
  • 财政年份:
    2015
  • 资助金额:
    $ 240.75万
  • 项目类别:

相似海外基金

Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
  • 批准号:
    520728-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
    University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10368760
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10669539
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9570142
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9915803
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
  • 批准号:
    10259999
  • 财政年份:
    2017
  • 资助金额:
    $ 240.75万
  • 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
  • 批准号:
    21580130
  • 财政年份:
    2009
  • 资助金额:
    $ 240.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 240.75万
  • 项目类别:
    Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 240.75万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了