Multi-Cohort, Network-Guided Regression for GE/GG Interactions in Disease Traits
疾病特征中 GE/GG 相互作用的多队列、网络引导回归
基本信息
- 批准号:8454444
- 负责人:
- 金额:$ 24.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-05 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAreaAutistic DisorderBiologicalBiological databasesCardiovascular DiseasesCardiovascular systemCohort StudiesComplexComputer softwareDNA SequenceDataData AnalysesDetectionDevelopmentDiabetes MellitusDiseaseEmotionalEnvironmentEpidemiologyEtiologyEvaluationFamilyFinancial costFramingham Heart StudyGenesGeneticGenomicsGlucoseGoalsHeartHumanHuman GenomeIndividualInsulinLife StyleLungMalignant NeoplasmsMeasuresMedicineMeta-AnalysisMetabolicMethodologyMethodsModelingNatureNeurologicObesityParkinson DiseasePathway interactionsPhenotypePopulationProcessResearchResearch InfrastructureScientistSmokingSocietiesStagingStatistical Data InterpretationTechnologyTranslatingWorkbasebiological systemscohortgene discoverygene interactionhuman diseasehypertensive heart diseaseimprovedinsightloved onesnetwork modelsnovelpulmonary functionsimulationtooltraittreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Complex diseases are believed to be caused by a number of factors of both genetic and environmental nature, as well as lifestyle. Examples include cardiovascular (e.g., heart disease, hypertension), metabolic (e.g., diabetes), and neurological (e.g., Alzheimer's, Parkinson's, and autism) diseases, and cancer. The financial costs of these diseases on families and society are staggering, while their physical and emotional toll on individuals and their loved ones is incalculable. While early on it was expected that decoding the human genome would be an immediate precursor to gaining significant insight into the causes of complex diseases, it is clear now that progress in this area must come from unraveling the interplay of genes with environment, as well as with each other, through the system of biological pathways and related networks. Our goal in this proposal is the development of a novel network-guided statistical methodology to facilitate the discovery of gene-environment (GxE) and gene-gene (GxG) interactions associated with complex quantitative traits associated with human disease. Specifically, we will (1) develop a class of sparse, network-guided regression models for detection of GxE and GxG interactions, (2) extend the applicability of this regression framework to multiple cohorts through the development of a two-stage meta-analysis strategy, and (3) assess the overall methodology both in simulation and using data from two specific disease areas: diabetes-related quantitative traits and pulmonary quantitative traits and diseases. The data analyses will be done in conjunction with colleagues at the Framingham Heart Study and two consortia: MAGIC and CHARGE. Successful completion of the proposed research will yield a highly novel and coherent set of tools (including software implementation) for a principled and biologically- informed two-stage approach to detecting GxE and GxG interactions associated with human disease in current large-scale, multi-cohort association analyses. Ultimately, our work should help to significantly accelerate the development of targeted therapies and personalized medicine strategies, through its fundamental impact on the early stages of the overall process.
描述(由申请人提供):复杂疾病被认为是由遗传和环境性质以及生活方式的许多因素引起的。实例包括心血管(例如,心脏病,高血压),代谢(例如,糖尿病),和神经学(例如,阿尔茨海默氏症、帕金森氏症和自闭症)疾病和癌症。这些疾病给家庭和社会造成的经济损失是惊人的,而给个人及其亲人造成的身心损失是无法估量的。虽然早期人们预计,解码人类基因组将是获得对复杂疾病原因的重要见解的直接先驱,但现在很清楚,这一领域的进展必须来自于通过生物途径和相关网络系统揭示基因与环境以及基因之间的相互作用。我们的目标是开发一种新的网络引导的统计方法,以促进发现与人类疾病相关的复杂数量性状相关的基因-环境(GxE)和基因-基因(GxG)相互作用。具体而言,我们将(1)开发一类稀疏的网络引导回归模型,用于检测GxE和GxG相互作用,(2)通过开发两阶段荟萃分析策略将该回归框架的适用性扩展到多个队列,以及(3)评估模拟和使用两个特定疾病领域数据的整体方法:糖尿病相关的数量性状和肺数量性状与疾病。数据分析将与心脏研究中心的同事和两个联盟:MAGIC和CHARGE一起进行。成功完成拟议的研究将产生一套高度新颖和连贯的工具(包括软件实现),用于在当前大规模多队列关联分析中检测与人类疾病相关的GxE和GxG相互作用的原则性和生物学信息两阶段方法。最终,我们的工作应该有助于显著加快靶向治疗和个性化医疗策略的发展,通过其对整个过程的早期阶段的根本影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josee Dupuis其他文献
Josee Dupuis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josee Dupuis', 18)}}的其他基金
Multi-Cohort, Network-Guided Regression for GE/GG Interactions in Disease Traits
疾病特征中 GE/GG 相互作用的多队列、网络引导回归
- 批准号:
8218633 - 财政年份:2012
- 资助金额:
$ 24.06万 - 项目类别:














{{item.name}}会员




