Notochordal Cell Derived Therapies for Painful Disc Degeneration

脊索细胞衍生疗法治疗疼痛性椎间盘退变

基本信息

项目摘要

DESCRIPTION (provided by applicant): Intervertebral disc (IVD) degeneration is a debilitating disorder implicated in the pathogenesis of low back pain with associated medical costs that can exceed $100 billion annually. The overall goal of the proposed research is to introduce novel therapeutic agents and strategies for use in a minimally invasive manner to limit degeneration, restore IVD structure, and reduce painful conditions of degenerative disc disease. Current therapies fail to integrate both structural repair and analgesia. Further, several analgesics are cytotoxic so that developing new therapeutic agents and strategies are a major research priority. The large vacuolated notochordal cells (NCs) in developing animals orchestrate patterning of the IVDs, vertebrae and surrounding spinal structures. Humans and other species that do not retain NCs into adulthood exhibit age related IVD degeneration and researchers have long sought to answer why NCs are lost in humans at young ages. The literature now indicates NCs are progenitor cells and suggests their early disappearance in humans is associated with their differentiation to small chondrocytic nucleus pulposus cells (SNPCs). For the first time, we have a bioreactor and culture methods capable of differentiating NCs into SNPCs so that we can derive therapies from NCs and explore mechanisms for their differentiation. The proposed studies provide a new paradigm for designing an integrated therapeutic intervention derived from trophic agents secreted by NCs to create structure and symptom modifying therapies capable of restoring IVD function and preventing discogenic pain by inhibition of neurovascular growth into the IVD. Aim 1 will determine microenvironment conditions capable of retaining NC phenotype, characterize the phenotypic stability of important genes and proteins of bioactive molecules produced by NCs, and isolate pathways involved in NC differentiation. Aim 2 is a series of descriptive and mechanistic studies that assess therapeutic potential of proteins secreted by NCs with dependent variables that focus on pain inhibition by limiting neurovascular invasion and promoting structural restoration. Aim 3 evaluates designed 'cocktail' treatments for their effects promoting anabolism and inhibiting discogenic pain or predictors of pain in human ex vivo organ culture models and rat in vivo discogenic pain models. This project is significant because of the translational potential to the highly clinically significant problem of discogenic back pain. The approach is innovative because it investigates factors important in developmental biology and introduces them for therapeutic effect using descriptive and mechanistic studies. We focus on therapeutic potential with mechanistic testing and screening studies using novel human organ culture and rat discogenic pain models. Innovation and significance are also high because determining optimal microenvironmental culturing conditions of NCs will help accelerate the growing body of research on these underexplored cells.
描述(由申请人提供):椎间盘 (IVD) 退变是一种使人衰弱的疾病,与腰痛的发病机制有关,每年相关的医疗费用可能超过 1000 亿美元。拟议研究的总体目标是引入新的治疗药物和策略,以微创方式使用,以限制退变、恢复 IVD 结构并减少退行性椎间盘疾病的痛苦状况。目前的疗法未能整合结构修复和镇痛。此外,一些镇痛药具有细胞毒性,因此开发新的治疗剂和策略是主要的研究重点。发育中动物体内的大型空泡脊索细胞 (NC) 协调 IVD、椎骨和周围脊柱结构的模式。人类和其他在成年后不保留 NC 的物种会表现出与年龄相关的 IVD 退化,研究人员长期以来一直在寻找答案,解释为什么人类在年轻时会丢失 NC。现在的文献表明 NC 是祖细胞,并表明它们在人类中的早期消失与它们分化为小软骨细胞髓核细胞 (SNPC) 有关。我们首次拥有能够将 NC 分化为 SNPC 的生物反应器和培养方法,以便我们可以从 NC 中衍生治疗方法并探索其分化机制。拟议的研究为设计源自 NC 分泌的营养剂的综合治疗干预提供了新的范例,以创建能够恢复 IVD 功能并通过抑制神经血管生长到 IVD 来预防椎间盘源性疼痛的结构和症状修饰疗法。目标 1 将确定能够保留 NC 表型的微环境条件,表征 NC 产生的生物活性分子的重要基因和蛋白质的表型稳定性,并分离参与 NC 分化的途径。目标 2 是一系列描述性和机制研究,评估 NC 分泌的蛋白质的治疗潜力,其因变量侧重于通过限制神经血管侵袭和促进结构恢复来抑制疼痛。目标 3 评估设计的“鸡尾酒”治疗在人类离体器官培养模型和大鼠体内椎间盘源性疼痛模型中促进合成代谢和抑制椎间盘源性疼痛或疼痛预测因子的效果。该项目意义重大,因为它具有解决椎间盘源性背痛这一具有高度临床意义的问题的潜力。该方法具有创新性,因为它研究了发育生物学中的重要因素,并通过描述性和机制研究将它们引入治疗效果。我们专注于使用新型人体器官培养和大鼠椎间盘源性疼痛模型进行机械测试和筛选研究的治疗潜力。创新性和重要性也很高,因为确定 NC 的最佳微环境培养条件将有助于加速对这些尚未开发的细胞的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James C. Iatridis其他文献

P49. Physical activity measures in lumbar laminectomy patients: a prospective comparison of fitness tracker measures versus patient-reported outcome measures
  • DOI:
    10.1016/j.spinee.2020.05.447
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dennis M. Bienstock;Dhruv S. Shankar;Jinseong Kim;Nicole Zubizarreta;Jashvant Poeran;Wesley H. Bronson;Saad B. Chaudhary;James C. Iatridis
  • 通讯作者:
    James C. Iatridis
Does BMP-2 Really Cause Cancer? A Systematic Review of the Literature
  • DOI:
    10.1016/j.spinee.2012.08.375
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Steven M. Koehler;James C. Iatridis;Andrew Hecht;Sheeraz Qureshi;Samuel K. Cho
  • 通讯作者:
    Samuel K. Cho
TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair potential in degenerative conditions
在退变情况下,TNFR1介导的衰老以及TNFR2信号缺失限制了人椎间盘细胞的修复潜能
  • DOI:
    10.1016/j.joca.2025.02.791
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Jennifer Gansau;Elena Grossi;Levon Rodriguez;Minghui Wang;Damien M. Laudier;Saad Chaudhary;Andrew C. Hecht;Wenyu Fu;Robert Sebra;Chuan-Ju Liu;James C. Iatridis
  • 通讯作者:
    James C. Iatridis
Effect of the CCL5 releasing fibrin gel for intervertebral disc regeneration
  • DOI:
    7.10.1177/1947603518764263
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhiyu Zhou;Stephan Zeiter;Tanja Schmid;Daisuke Sakai;James C. Iatridis;Guangqian Zhou;R. Geoff Richards;Mauro Alini;Sibylle Grad;Zhen Li
  • 通讯作者:
    Zhen Li
Trends in Bone Morphogenetic Protein (BMP) Usage Since the US Food and Drug (FDA) Advisory in 2008: What Happens to Physician Practices When the FDA Issues an Advisory?
  • DOI:
    10.1016/j.spinee.2013.07.299
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Janay Mckie;Sheeraz A. Qureshi;James C. Iatridis;Natalia N. Egorova;Samuel K. Cho;Andrew Hecht
  • 通讯作者:
    Andrew Hecht

James C. Iatridis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James C. Iatridis', 18)}}的其他基金

Mechanisms for Regenerative Healing in Intervertebral Discs
椎间盘再生愈合机制
  • 批准号:
    10344363
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Role of TNFalpha in discogenic pain progression and as a treatment target
TNFα 在椎间盘源性疼痛进展中的作用及其作为治疗靶点
  • 批准号:
    10557110
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Role of TNFalpha in discogenic pain progression and as a treatment target
TNFα 在椎间盘源性疼痛进展中的作用及其作为治疗靶点
  • 批准号:
    10755462
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Mechanisms for Regenerative Healing in Intervertebral Discs
椎间盘再生愈合机制
  • 批准号:
    10551336
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Diversity Supplement for: Mechanisms for Regenerative Healing in Intervertebral Discs
多样性补充:椎间盘再生愈合机制
  • 批准号:
    10631488
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Role of TNFalpha in discogenic pain progression and as a treatment target
TNFα 在椎间盘源性疼痛进展中的作用及其作为治疗靶点
  • 批准号:
    10375766
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Mechanisms for Regenerative Healing in Intervertebral Discs
椎间盘再生愈合机制
  • 批准号:
    10762672
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Diversity Supplement for: Role of TNFalpha in discogenic pain progression and as a treatment target
多样性补充:TNFα 在椎间盘源性疼痛进展中的作用以及作为治疗目标
  • 批准号:
    10631481
  • 财政年份:
    2022
  • 资助金额:
    $ 50.05万
  • 项目类别:
Diabetes Induced Disc Degeneration and Prevention
糖尿病引起的椎间盘退变及预防
  • 批准号:
    9185665
  • 财政年份:
    2016
  • 资助金额:
    $ 50.05万
  • 项目类别:
Diabetes Induced Disc Degeneration and Prevention
糖尿病引起的椎间盘退变及预防
  • 批准号:
    9293971
  • 财政年份:
    2016
  • 资助金额:
    $ 50.05万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 50.05万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了