Biophysical Mechanisms of Drosophila Development.
果蝇发育的生物物理机制。
基本信息
- 批准号:8546429
- 负责人:
- 金额:$ 25.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdherens JunctionApicalAtherosclerosisBackBehaviorBiochemicalBlood VesselsCell AdhesionCell Adhesion MoleculesCell ShapeCellsChemotactic FactorsColorComputational algorithmComputer AnalysisComputing MethodologiesCytoskeletonDNA Sequence RearrangementDefectDevelopmentDimensionsDrosophila genusEmbryoEmployee StrikesEpithelialEventFishesForce FeedingsGeneticGoalsGrowth FactorHeadImageIntercalated CellKidneyLifeLungMammary glandMechanicsMediatingMolecularMorphogenesisMotorMovementMyosin ATPaseNeoplasm MetastasisOrganismOsteoporosisPathway interactionsPatternPlayPopulationPreventionProcessProteinsRanaRegulationRoleSea UrchinsShapesSignal TransductionSpinal CordStructureTailTestingTimeTissuesTranslatingascidianbasebody systembonecardiogenesiscell behaviorcell motilitydirectional celldriving forceflyhuman diseasein vivoinsightintercalationmorphogensmutantpolarized cellresearch studyresponsetumor progression
项目摘要
DESCRIPTION (provided by applicant): The diverse shapes of multicellular organisms are established during development by spatially and temporally regulated changes in cell shape and behavior. A major morphogenetic movement in multicellular organisms is the reorganization of cells to form the elongated head-to-tail body axis. This conserved process requires a striking directionality in which populations of cells align their movements with the body axes, referred to as cell intercalation. Cell intercalation in epithelial tissues occurs in the presence of a networkof adherens junctions that transmits mechanical forces between cells and maintains its integrity as cells make and break contacts throughout cell rearrangement. Genetic studies have provided insight into the biochemical signals that regulate cell fate and behavior, but much less is known about how cells sense and respond to mechanical signals to translate mechanical forces into directional cell movement. In the Drosophila embryo, the polarized cell rearrangements that drive body axis elongation are guided by the spatial and temporal regulation of contractile actomyosin networks. However, the molecular mechanisms that mediate force-dependent myosin regulation are not well understood. The long-term goal of these studies is to obtain insight into how cells translate mechanical forces into biochemical signals to generate three-dimensional tissue structure during development. The overall objective of this proposal is to characterize the molecular basis of the mechanotransduction pathway that regulates myosin localization in intercalating cells and investigate how this mechanism influences the three-dimensional cell behaviors that shape the Drosophila body axis. We will use high-throughput computational methods we have developed to analyze in vivo myosin localization in the Drosophila embryo and compare myosin dynamics with the distributions of other proteins involved in contractility and cell adhesion. We will use biophysical, live imaging and quantitative
computational approaches to characterize the molecular mechanisms that translate mechanical forces into a change in myosin localization. In addition, we will analyze cell shape and behavior in three dimensions during axis elongation and characterize the defects in embryos lacking specific proteins. Mechanical forces have been shown to influence many aspects of tissue development, including blood vessel remodeling, lung branching morphogenesis, and development of the heart, kidney, mammary gland, and bone. These studies will identify the mechanisms by which mechanical forces regulate myosin localization and activity and provide information relevant to the treatment and prevention of human diseases that involve defects in mechanical cell regulation, including atherosclerosis, osteoporosis, and tumor progression to metastasis.
描述(由申请人提供):多细胞生物的不同形状是在发育过程中通过细胞形状和行为的空间和时间调节变化建立的。多细胞生物中的一个主要形态发生运动是细胞重组形成伸长的头到尾体轴。这个保守的过程需要一个惊人的方向性,其中细胞群体将其运动与身体轴对齐,称为细胞嵌入。上皮组织中的细胞嵌入发生在存在粘附连接网络的情况下,粘附连接网络在细胞之间传递机械力,并在细胞重排过程中保持其完整性。遗传学研究提供了对调节细胞命运和行为的生化信号的深入了解,但对细胞如何感知和响应机械信号以将机械力转化为定向细胞运动的了解要少得多。在果蝇胚胎中,驱动体轴伸长的极化细胞重排由收缩性肌动球蛋白网络的空间和时间调节指导。然而,介导力依赖性肌球蛋白调节的分子机制还不清楚。这些研究的长期目标是深入了解细胞如何将机械力转化为生化信号,以在发育过程中产生三维组织结构。该提案的总体目标是表征调节肌球蛋白在插入细胞中定位的机械转导途径的分子基础,并研究这种机制如何影响塑造果蝇体轴的三维细胞行为。我们将使用高通量的计算方法,我们已经开发出在体内肌球蛋白在果蝇胚胎中的定位分析和比较肌球蛋白的动力学与其他蛋白质的分布参与收缩性和细胞粘附。我们将使用生物物理,实时成像和定量
计算方法来表征将机械力转化为肌球蛋白定位变化的分子机制。此外,我们将在轴伸长过程中分析三维细胞形状和行为,并表征缺乏特定蛋白质的胚胎中的缺陷。机械力已被证明会影响组织发育的许多方面,包括血管重塑、肺分支形态发生以及心脏、肾脏、乳腺和骨骼的发育。这些研究将确定机械力调节肌球蛋白定位和活性的机制,并提供与治疗和预防涉及机械细胞调节缺陷的人类疾病相关的信息,包括动脉粥样硬化,骨质疏松症和肿瘤转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer A Zallen其他文献
Jennifer A Zallen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer A Zallen', 18)}}的其他基金
Biophysical Mechanisms of Drosophila Development.
果蝇发育的生物物理机制。
- 批准号:
8335744 - 财政年份:2012
- 资助金额:
$ 25.26万 - 项目类别:
Biophysical Mechanisms of Drosophila Development.
果蝇发育的生物物理机制。
- 批准号:
8676815 - 财政年份:2012
- 资助金额:
$ 25.26万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 25.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 25.26万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 25.26万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 25.26万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 25.26万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 25.26万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 25.26万 - 项目类别:
Postdoctoral Fellowships