Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
基本信息
- 批准号:8528636
- 负责人:
- 金额:$ 22.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAgricultureAlgorithmsBehaviorCase StudyCharacteristicsCommunicable DiseasesCommunitiesComplexComputer softwareConflict (Psychology)ContainmentCountyCrisis InterventionDataDecision MakingDecision Support ModelDecision TheoryDemographyDevelopmentDisease OutbreaksDisease modelEducational workshopEffectivenessEpidemicEpidemiologyEvaluationEventFarming environmentFeedbackFoot-and-Mouth DiseaseHandHealthHumanIndividualInstructionInterventionKnowledgeLearningLinkLivestockLocationMethodsModelingMonitorNatural ResourcesOral cavityParticipantPoliciesPolicy MakerPropertyPublic HealthResearch InfrastructureSourceStructureSystemTheoretical modelTimeTrainingUncertaintyUpdateVaccinationWorkbasecopingdisorder controlfarmerflexibilityfootimprovedinnovationmembernovelpredictive modelingpublic health emergencyreal time modelresponsesuccesssurveillance datatooltransmission processuptake
项目摘要
To control disease outbreaks, critical decisions are necessary in the face of uncertainty. Though we can use
models for decision support, key uncertainties about any specific epidemic, in both agricultural and human
health settings, cannot be resolved a priori. By monitoring the response of an outbreak to management
interventions, one can learn about both model structure and parameter values, to inform decisions. Such
evaluation and assessment of competing models is often done in retrospect, and is rarely of use to real-time
policies. Rather than focusing on identification of a "best model", Adaptive Management (AM) combines
real-time model fitting, based on dynamic surveillance data, with stochastic optimization to select the best
management action to maximize management objectives conditional on the current support for competing
models. The fundamental innovation of AM is the incorporation of active learning, whereby management
actions are evaluated based on their inherent benefit to achieving the objective, as well as their contribution
to resolving uncertainties that limit the selection of the best action for the outbreak at hand. Though
previously applied in natural resource management, AM has not been generalized for dealing with the
management of infectious disease dynamics. Here we propose a multi-year effort to develop an
infrastructure for model-based structured decision-making using AM for epidemic response. To demonstrate
the feedback between modeling and decision-making, we propose to develop a retrospective analysis of the
2001 UK foot and mouth disease (FMD) epidemic. Through interactions with agency stake-holders in annual
workshops, we will develop specific FMD model scenarios to study the interaction of uncertainties in spatial
dynamics with decision-making and FMD outbreak response in the US setting. We will develop methods and
software to study the FMD case study, which we will employ more generally to investigate AM of other
livestock and human outbreaks in the face of various sources of spatial and logistical uncertainties that limit
management. Using theoretical models, we will study the application of real-time surveillance data to resolve
key uncertainties in spatial locations, transmission networks, and competing local and global objectives for
the development of adaptive strategies that can optimally respond to specific outbreak settings.
为了控制疾病的爆发,在面临不确定性的情况下,必须作出关键决定。虽然我们可以使用
决策支持模型,任何特定流行病的关键不确定性,农业和人类
健康环境,不能先验地解决。通过监测疫情对管理的反应,
通过干预,人们可以了解模型结构和参数值,以便为决策提供信息。等
对相互竞争的模型的评价和评估通常是在事后进行的,很少用于实时评估
施政纲要而自适应管理(AM)不是专注于识别“最佳模型”,而是将
实时模型拟合,基于动态监测数据,随机优化选择最佳
管理行动,以最大限度地提高管理目标的条件下,目前的支持竞争
模型AM的根本创新是主动学习的结合,
根据行动对实现目标的内在效益及其贡献来评价行动
解决不确定性,这些不确定性限制了对当前疫情采取最佳行动的选择。虽然
以前应用于自然资源管理,AM还没有被推广用于处理
传染病动态管理。在此,我们提出一项多年努力,
使用AM进行流行病应对的基于模型的结构化决策基础设施。证明
建模和决策之间的反馈,我们建议开发一个回顾性分析,
2001年英国口蹄疫(FMD)流行。通过每年与机构股东的互动,
研讨会,我们将制定具体的FMD模型方案,研究空间不确定性的相互作用,
美国环境中决策和口蹄疫爆发反应的动态。我们将制定方法,
软件来研究FMD的案例研究,我们将采用更普遍的调查AM的其他
面对各种空间和后勤不确定性来源,
管理利用理论模型,我们将研究应用实时监控数据来解决
空间位置、传输网络以及相互竞争的地方和全球目标的关键不确定性,
制定适应性战略,以最佳方式应对特定疫情。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Ferrari其他文献
Matthew Ferrari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Ferrari', 18)}}的其他基金
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8665450 - 财政年份:2012
- 资助金额:
$ 22.18万 - 项目类别:
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8837651 - 财政年份:2012
- 资助金额:
$ 22.18万 - 项目类别:
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8451706 - 财政年份:2012
- 资助金额:
$ 22.18万 - 项目类别:
相似海外基金
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
EU-Funded
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Cooperative Agreement
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Standard Grant
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Research Grant