Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
基本信息
- 批准号:8837651
- 负责人:
- 金额:$ 26.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAgricultureAlgorithmsBehaviorCase StudyCharacteristicsCommunicable DiseasesCommunitiesComplexComputer softwareConflict (Psychology)ContainmentCountyCrisis InterventionDataDecision MakingDecision Support ModelDecision TheoryDemographyDevelopmentDisease OutbreaksDisease modelEducational workshopEffectivenessEpidemicEpidemiologyEvaluationEventFarming environmentFeedbackFoot-and-Mouth DiseaseHandHealthHumanIndividualInstructionInterventionKnowledgeLearningLinkLivestockLocationMethodsModelingMonitorNatural ResourcesOral cavityParticipantPoliciesPolicy MakerPropertyResearch InfrastructureSourceStructureSystemTheoretical modelTimeTrainingUncertaintyUpdateVaccinationWorkbasecopingdisorder controlfarmerflexibilityfootimprovedinnovationmembernovelpredictive modelingpublic health emergencypublic health interventionreal time modelresponsesuccesssurveillance datatooltransmission processuptake
项目摘要
To control disease outbreaks, critical decisions are necessary in the face of uncertainty. Though we can use
models for decision support, key uncertainties about any specific epidemic, in both agricultural and human
health settings, cannot be resolved a priori. By monitoring the response of an outbreak to management
interventions, one can learn about both model structure and parameter values, to inform decisions. Such
evaluation and assessment of competing models is often done in retrospect, and is rarely of use to real-time
policies. Rather than focusing on identification of a "best model", Adaptive Management (AM) combines
real-time model fitting, based on dynamic surveillance data, with stochastic optimization to select the best
management action to maximize management objectives conditional on the current support for competing
models. The fundamental innovation of AM is the incorporation of active learning, whereby management
actions are evaluated based on their inherent benefit to achieving the objective, as well as their contribution
to resolving uncertainties that limit the selection of the best action for the outbreak at hand. Though
previously applied in natural resource management, AM has not been generalized for dealing with the
management of infectious disease dynamics. Here we propose a multi-year effort to develop an
infrastructure for model-based structured decision-making using AM for epidemic response. To demonstrate
the feedback between modeling and decision-making, we propose to develop a retrospective analysis of the
2001 UK foot and mouth disease (FMD) epidemic. Through interactions with agency stake-holders in annual
workshops, we will develop specific FMD model scenarios to study the interaction of uncertainties in spatial
dynamics with decision-making and FMD outbreak response in the US setting. We will develop methods and
software to study the FMD case study, which we will employ more generally to investigate AM of other
livestock and human outbreaks in the face of various sources of spatial and logistical uncertainties that limit
management. Using theoretical models, we will study the application of real-time surveillance data to resolve
key uncertainties in spatial locations, transmission networks, and competing local and global objectives for
the development of adaptive strategies that can optimally respond to specific outbreak settings.
为了控制疾病爆发,面对不确定性,必须做出关键决策。虽然我们可以使用
决策支持模型、农业和人类任何特定流行病的关键不确定性
健康设置,无法先验地解决。通过监控管理层对疫情的反应
通过干预,人们可以了解模型结构和参数值,为决策提供信息。这样的
对竞争模型的评估和评估通常是回顾性的,很少用于实时
政策。自适应管理 (AM) 不是专注于识别“最佳模型”,而是将
实时模型拟合,基于动态监测数据,通过随机优化选择最佳模型
以当前对竞争的支持为条件,实现管理目标最大化的管理行动
模型。 AM 的根本创新是主动学习的结合,通过管理
根据行动对实现目标的固有效益及其贡献进行评估
解决限制当前疫情爆发最佳行动选择的不确定性。尽管
以前应用于自然资源管理时,AM 并没有被推广到处理
传染病动态管理。在此,我们建议通过多年的努力来开发
使用 AM 进行流行病应对的基于模型的结构化决策的基础设施。展示
建模和决策之间的反馈,我们建议对
2001年英国手足口病(FMD)流行。通过与机构利益相关者的年度互动
研讨会上,我们将开发特定的 FMD 模型场景来研究空间不确定性的相互作用
美国决策和口蹄疫疫情应对的动态。我们将开发方法并
研究 FMD 案例研究的软件,我们将更广泛地使用该软件来研究其他的 AM
面对各种空间和后勤不确定性来源,牲畜和人类爆发疫情限制了
管理。利用理论模型,我们将研究实时监控数据的应用,以解决
空间位置、传输网络以及相互竞争的本地和全球目标的关键不确定性
制定能够对特定爆发环境做出最佳反应的适应性策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Ferrari其他文献
Matthew Ferrari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Ferrari', 18)}}的其他基金
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8665450 - 财政年份:2012
- 资助金额:
$ 26.55万 - 项目类别:
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8451706 - 财政年份:2012
- 资助金额:
$ 26.55万 - 项目类别:
Linking models and policy: Using active adaptive management for optimal control o
连接模型和策略:使用主动自适应管理来实现最优控制
- 批准号:
8528636 - 财政年份:2012
- 资助金额:
$ 26.55万 - 项目类别:
相似海外基金
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
EU-Funded
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Cooperative Agreement
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Standard Grant
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Research Grant