Novel fluoroquinolones for killing dormant Mycobacterium tuberculosis
用于杀死休眠结核分枝杆菌的新型氟喹诺酮类药物
基本信息
- 批准号:8534688
- 负责人:
- 金额:$ 36.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAchievementAerosolsAllelesAntibioticsAntimicrobial ResistanceAttentionBacillus (bacterium)BacteriaBacterial InfectionsBindingBiochemicalBiochemistryBiological AssayBiologyCalorimetryCause of DeathCell DeathCellsChromosomesCleaved cellClinicalComplexComputing MethodologiesCultured CellsDNADNA GyraseDNA TopoisomerasesDiseaseDoseDrug resistanceEdetic AcidEnzymesEscherichia coliFluoroquinolonesFosteringGoalsGrowthInfectionKnowledgeLeadMagnesiumMeasuresMediatingModelingMolecularMolecular ModelsMoxifloxacinMusMycobacterium tuberculosisNitric OxideOrganismOutcomeOutputOxygenPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstanceProcessPropertyProtein BiosynthesisProteinsQuantitative Structure-Activity RelationshipQuinolonesReactive Oxygen SpeciesRecordsResistanceRoentgen RaysRoleRotationStructureSystemTestingTimeTitrationsTopoisomeraseTuberculosisVariantWorkantimicrobialcell killingchelationcompliance behaviorcrosslinkdefined contributiondesigndrug structureexperiencein vivoinhibitor/antagonistkillingsmagnesium ionmolecular modelingmutantmycobacterialnovelprogramsprotein structure functionquinolone resistanceresearch studystoichiometrytuberculosis treatment
项目摘要
DESCRIPTION (provided by applicant): Tuberculosis is a serious airborne disease for which drug resistance has become a major issue. The long treatment time (6-24 months) is particularly problematic because it creates difficulties in maintaining patient adherence to therapy. Sporadic treatment then fosters the emergence of antimicrobial-resistant Mycobacterium tuberculosis, the causative agent of tuberculosis. Long treatment times are needed, presumably because even active infections contain some non-growing (dormant) bacilli that are not readily killed by most antimicrobials. Our goal is to obtain new fluoroquinolones that rapidly kill non-growing M. tuberculosis and would thereby reduce treatment time radically. As part of their mechanism of action, quinolones trap DNA gyrase as drug-enzyme-DNA complexes in which the DNA is broken but held together by protein. Formation of these complexes, which are thought to block bacterial growth, is reversed by chelation of magnesium ion. Recent work leads us to propose that at lethal quinolone concentrations, which are higher than required to block growth, additional drug binding generates a new complex that is not reversed by chelation of magnesium. We propose that the new complex leads to chromosome fragmentation, which in growing cells is followed by a lethal cascade of reactive oxygen species. Only a quinolone subset kills non-growing cells. These quinolones are proposed to stimulate chromosome fragmentation that causes death directly, without requiring a cascade of reactive oxygen species. The above scenario will be tested by designing, synthesizing, and characterizing new quinolones and quinolone- derived structures for interactions with gyrase and for killing non-growing cells. In aim 1, tests with cultured cells will examine relationships between experimental compounds and gyrase structure, using gyrase mutants, in-vivo crosslinking, drug structure variation, and molecular modeling. The primary readout will be cell death when protein synthesis is inhibited to eliminate the lethal pathway operating with growing cells. In aim 2, experiments will focus on biochemical properties of the newly discovered quinolone-gyrase-DNA complex formed at the elevated drug concentrations required to kill bacteria. Attention will focus on drug structures that facilitate release of DNA breaks from gyrase-mediated constraint. In aim 3, drug structure- lethal activity relationships will be determined with computational analyses (eg. 3-dimensional quantitative structure-activity relationship models) that do not rely on knowledge of drug-gyrase interactions. Superior compounds from work on each of the three aims will be examined for lethality with three mycobacterial growth-arrest systems. The expected outcomes are lead compounds and novel rules for developing new quinolone-type inhibitors that rapidly kill non-growing, persister cells.
描述(由申请人提供):结核病是一种严重的空气传播疾病,耐药性已成为一个主要问题。长的治疗时间(6-24个月)是特别成问题的,因为它在维持患者对治疗的依从性方面产生了困难。然后,零星的治疗促进了耐抗生素结核分枝杆菌的出现,这是结核病的病原体。需要长时间的治疗,大概是因为即使是活动性感染也含有一些不生长(休眠)的杆菌,这些杆菌不容易被大多数抗菌药物杀死。我们的目标是获得新的氟喹诺酮类药物,快速杀死非生长型M。结核病,从而从根本上减少治疗时间。作为其作用机制的一部分,喹诺酮类药物捕获DNA旋转酶作为药物-酶-DNA复合物,其中DNA被破坏但被蛋白质保持在一起。这些复合物的形成被认为是阻止细菌生长的,通过镁离子的螯合作用而逆转。最近的工作使我们提出,在致命的喹诺酮浓度,这是高于所需的阻断生长,额外的药物结合产生一个新的复合物,不逆转螯合镁。我们提出,新的复合物导致染色体断裂,在生长的细胞中,随后是致命的活性氧级联反应。只有喹诺酮亚类杀死非生长细胞。这些喹诺酮类被提议刺激直接导致死亡的染色体断裂,而不需要活性氧的级联反应。上述方案将通过设计、合成和表征新的喹诺酮和喹诺酮衍生结构来测试,用于与促旋酶相互作用和用于杀死非生长细胞。在目标1中,使用培养细胞的测试将使用促旋酶突变体、体内交联、药物结构变化和分子建模来检查实验化合物与促旋酶结构之间的关系。当蛋白质合成被抑制以消除与生长细胞一起操作的致死途径时,主要读出将是细胞死亡。在目标2中,实验将集中在新发现的喹诺酮-促旋酶-DNA复合物的生物化学性质上,该复合物在杀死细菌所需的升高的药物浓度下形成。注意力将集中在药物结构,促进释放的DNA断裂从回旋酶介导的约束。在目标3中,药物结构-致死活性关系将通过计算分析来确定(例如,3-三维定量结构-活性关系模型),其不依赖于药物-促旋酶相互作用的知识。将用三种分枝杆菌生长抑制系统检查在三个目标中的每一个目标上工作的上级化合物的致死性。预期的结果是开发新的喹诺酮类抑制剂的先导化合物和新规则,这些抑制剂可以快速杀死非生长的持久细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARL A DRLICA其他文献
KARL A DRLICA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARL A DRLICA', 18)}}的其他基金
Lethal action of fluoroquinolones with non-growing Mycobacterium tuberculosis
氟喹诺酮类药物对非生长结核分枝杆菌的致死作用
- 批准号:
7416678 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Novel fluoroquinolones for killing dormant Mycobacterium tuberculosis
用于杀死休眠结核分枝杆菌的新型氟喹诺酮类药物
- 批准号:
8706364 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Novel fluoroquinolones for killing dormant Mycobacterium tuberculosis
用于杀死休眠结核分枝杆菌的新型氟喹诺酮类药物
- 批准号:
8715680 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Lethal action of fluoroquinolones with non-growing Mycobacterium tuberculosis
氟喹诺酮类药物对非生长结核分枝杆菌的致死作用
- 批准号:
7243955 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Lethal action of fluoroquinolones with non-growing Mycobacterium tuberculosis
氟喹诺酮类药物对非生长结核分枝杆菌的致死作用
- 批准号:
7821486 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Novel fluoroquinolones for killing dormant Mycobacterium tuberculosis
用于杀死休眠结核分枝杆菌的新型氟喹诺酮类药物
- 批准号:
8885631 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
Lethal action of fluoroquinolones with non-growing Mycobacterium tuberculosis
氟喹诺酮类药物对非生长结核分枝杆菌的致死作用
- 批准号:
8062289 - 财政年份:2007
- 资助金额:
$ 36.21万 - 项目类别:
相似海外基金
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
- 批准号:
24K14615 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335800 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
- 批准号:
2244734 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
- 批准号:
23K16740 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
- 批准号:
2300738 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
- 批准号:
2890475 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
- 批准号:
2225178 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant














{{item.name}}会员




