Optimization of compounds to improve mRNA splicing in familial dysautonomia
优化化合物以改善家族性自主神经功能障碍中的 mRNA 剪接
基本信息
- 批准号:8279011
- 负责人:
- 金额:$ 20.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAllelesBiological AssayBiological ModelsBlood - brain barrier anatomyBrainCell LineCellsChemicalsClinicComplexCytokininsDataDevelopmentDiseaseDoseDrug Delivery SystemsDysautonomiasExonsFamilial DysautonomiaFamilyFirefly LuciferasesFoundationsFundingGaitGenesGoalsHereditary DiseaseHereditary Sensory NeuropathyHumanHuman GeneticsImpaired cognitionInvestmentsJointsKinetinsLaboratoriesLeadLengthLifeLuciferasesMessenger RNAModelingModificationMolecular TargetMusMutationNational Institute of Neurological Disorders and StrokeNerve DegenerationNeuronsNeurosciences ResearchOralPatientsPatternPharmaceutical ChemistryPharmaceutical PreparationsPhasePlaguePlantsPreclinical Drug EvaluationProductionProtein IsoformsProteinsRNA SplicingReactionRenillaReporterResourcesScreening procedureSecondary toSensoryStructure-Activity RelationshipSystemTestingTimeTissue ModelTissue-Specific SplicingTissuesTransgenic MiceUnited States National Institutes of HealthWorkanalogautonomic neuropathycell typedevelopmental diseasedisease-causing mutationdrug developmenteffective therapyexon skippingimprovedin vivolymphoblastmRNA Precursormembermouse modelnervous system disorderneuronal survivalnovelpreventprogramsprotein expressionresponsetherapy development
项目摘要
DESCRIPTION (provided by applicant): Familial dysautonomia (FD) is a hereditary sensory and autonomic neuropathy that is caused by a splice mutation in the IKBKAP gene. The mutation results in variable skipping of exon 20 in IKBKAP mRNA, which leads to a tissue-specific reduction of IKAP protein. Analysis of tissues from FD patients shows significantly more exon-skipping in neuronal tissue, and therefore lower IKAP levels. IKAP is a member of the human Elongator complex, which is required for efficient transcriptional elongation of a subset of genes. Despite the fact that FD is recessive, we have shown that patients retain the capacity to make both normal mRNA and protein. This discovery offers an exciting, direct approach towards the development of therapies aimed at increasing levels of cellular IKAP via splicing modification. As part of the NINDS-sponsored Neurodegeneration Drug Screening Consortium, we found that treatment of cultured FD cells with kinetin, a plant cytokinin, enhances exon-20-inclusion and dramatically increases the amount of wild-type IKBKAP mRNA and IKAP protein in FD cells. This compound has remarkable efficacy and can restore normal IKAP protein levels in patient cells within one week in culture. We have demonstrated kinetin's ability to alter IKBKAP splicing using minigene assays in a variety of cell types, as well as in human cells. More recently, we have shown in vivo efficacy in both transgenic mice and in human FD carriers. Despite substantial investment by the Dysautonomia Foundation in developing kinetin as a potential treatment for FD, the road to the clinic has been slow, and we are still working with the originally identified compound. We have recently generated some promising SAR (structure and activity relationship) data showing that the activity of the lead compound kinetin can be improved. It is crucial that chemical optimization be performed in order to improve the potency and activity of kinetin, and time is of the essence. Despite the fact that FD is a developmental disorder, patients are plagued by continued, drastic neuronal degeneration throughout life. Effectively increasing IKAP levels early in life may support neuronal survival and
prevent or delay the debilitating gait and sensory and cognitive decline seen in patients as they age. The Blueprint Neurotherapeutics Network offers a unique opportunity for drug development that will provide access to resources that are currently out of reach.
PUBLIC HEALTH RELEVANCE: Familial dysautonomia is a severe neurodevelopmental disease that is caused by a mutation in the IKBKAP gene. This mutations leads to reduced protein expression in all tissues, but this reduction is variable and is most severe in neuronal tissue. We have identified a compound, kinetin, that can increase IKAP protein in patient cells, and the goal of this proposal is to chemically optimize the potency and activity of kinetin in orde to develop an effective treatment for FD.
描述(申请人提供):家族性自主神经功能障碍(FD)是一种遗传性感觉和自主神经病变,由IKBKAP基因剪接突变引起。该突变导致IKBKAP mRNA中外显子20的可变跳跃,这导致IKAP蛋白的组织特异性减少。对FD患者组织的分析显示,神经元组织中的外显子跳跃显著更多,因此IKAP水平较低。IKAP是人类延伸子复合体的成员,其是基因子集的有效转录延伸所需的。尽管FD是隐性的,但我们已经证明患者保留了制造正常mRNA和蛋白质的能力。这一发现为开发旨在通过剪接修饰增加细胞IKAP水平的疗法提供了一种令人兴奋的直接方法。作为NINDS赞助的神经变性药物筛选联盟的一部分,我们发现用激动素(一种植物细胞分裂素)处理培养的FD细胞,可增强FD细胞中20号外显子的包含,并显著增加野生型IKBKAP mRNA和IKAP蛋白的量。该化合物具有显著的功效,并且可以在培养的一周内恢复患者细胞中正常的IKAP蛋白水平。我们已经证明了激动素的能力,改变IKBKAP剪接在各种细胞类型,以及在人类细胞中使用小基因测定。最近,我们在转基因小鼠和人类FD携带者中均显示了体内功效。尽管Dysautonomia基金会在开发激动素作为FD的潜在治疗方法方面进行了大量投资,但通往临床的道路一直很缓慢,我们仍在研究最初确定的化合物。我们最近已经产生了一些有前途的SAR(结构和活性关系)的数据显示,可以提高活性的先导化合物激动素。为了提高激动素的效力和活性,进行化学优化是至关重要的,并且时间至关重要。尽管FD是一种发育障碍,但患者一生中仍受到持续、剧烈的神经元变性的困扰。在生命早期有效地增加IKAP水平可以支持神经元存活,
预防或延缓患者随着年龄增长而出现的虚弱步态以及感觉和认知能力下降。Blueprint Neurotherapeutics Network为药物开发提供了一个独特的机会,可以获得目前无法获得的资源。
公共卫生相关性:家族性自主神经功能障碍是一种严重的神经发育疾病,由IKBKAP基因突变引起。这种突变导致所有组织中蛋白质表达减少,但这种减少是可变的,并且在神经元组织中最严重。我们已经确定了一种化合物,激动素,可以增加患者细胞中的IKAP蛋白,该提案的目标是化学优化激动素的效力和活性,以开发有效的FD治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan A Slaugenhaupt其他文献
Susan A Slaugenhaupt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan A Slaugenhaupt', 18)}}的其他基金
Development of a splicing modulator compound for familial dysautonomia
开发用于家族性自主神经功能障碍的剪接调节剂化合物
- 批准号:
10680719 - 财政年份:2023
- 资助金额:
$ 20.23万 - 项目类别:
A novel exon-specific U1 snRNA strategy to correct splicing in Familial Dysautonomia
一种新的外显子特异性 U1 snRNA 策略来纠正家族性自主神经功能障碍中的剪接
- 批准号:
10224206 - 财政年份:2018
- 资助金额:
$ 20.23万 - 项目类别:
mRNA Splicing Modulation in Familial Dysautonomia
家族性自主神经功能障碍中的 mRNA 剪接调节
- 批准号:
9303465 - 财政年份:2016
- 资助金额:
$ 20.23万 - 项目类别:
mRNA Splicing Modulation in Familial Dysautonomia
家族性自主神经功能障碍中的 mRNA 剪接调节
- 批准号:
10379981 - 财政年份:2016
- 资助金额:
$ 20.23万 - 项目类别:
Unraveling the therapeutic potential of a new class of splicing modulators
揭示新型剪接调节剂的治疗潜力
- 批准号:
9134913 - 财政年份:2015
- 资助金额:
$ 20.23万 - 项目类别:
Neurogenetics Undergraduate Summer Research Program
神经遗传学本科生暑期研究计划
- 批准号:
8309769 - 财政年份:2012
- 资助金额:
$ 20.23万 - 项目类别:
Neurogenetics Undergraduate Summer Research Program
神经遗传学本科生暑期研究计划
- 批准号:
8449634 - 财政年份:2012
- 资助金额:
$ 20.23万 - 项目类别:
Optimization of compounds to improve mRNA splicing in familial dysautonomia
优化化合物以改善家族性自主神经功能障碍中的 mRNA 剪接
- 批准号:
8918034 - 财政年份:2012
- 资助金额:
$ 20.23万 - 项目类别:
Optimization of compounds to improve mRNA splicing in familial dysautonomia
优化化合物以改善家族性自主神经功能障碍中的 mRNA 剪接
- 批准号:
9052459 - 财政年份:2012
- 资助金额:
$ 20.23万 - 项目类别:
Optimization of compounds to improve mRNA splicing in familial dysautonomia
优化化合物以改善家族性自主神经功能障碍中的 mRNA 剪接
- 批准号:
8662917 - 财政年份:2012
- 资助金额:
$ 20.23万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 20.23万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 20.23万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 20.23万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 20.23万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别: