Multivariate Dynamical Systems Methods for Identifying Causal Interactions in fMR

用于识别 fMR 中因果相互作用的多元动态系统方法

基本信息

  • 批准号:
    8293093
  • 负责人:
  • 金额:
    $ 19.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cognitive information processing depends on dynamical interactions between distributed brain areas. In the past decade, functional magnetic resonance imaging (fMRI) has emerged as a powerful tool for investigating human brain function. Although fMRI research has primarily focused on identifying brain regions that are activated during performance of cognitive tasks, there is growing consensus that cognitive functions emerge as a result of dynamic, context-dependent, causal interactions between multiple brain areas. Devising and validating methods for investigating such interactions has therefore taken added significance. Despite the growing need, the accuracy of current methods for identifying causal interactions in fMRI data remain poorly understood. The overall goal of this proposal is to address a critical need in fMRI by developing and testing new algorithms and software for identifying context-dependent causal interactions between distributed brain regions. We will first develop and validate novel methods based on a Multivariate Dynamical Systems (MDS) framework that overcomes several limitations of existing methods. We will then compare the performance of our new methods with other methods on both simulated and real fMRI data. Important contributions of these proposed studies include (1) development of novel multivariate state space methods for estimating causal interactions between brain regions and (2) first and most detailed evaluation of not only MDS but also other effective connectivity methods using both simulated and experimental fMRI data. Together, these studies will lead to new and improved tools for analyzing functional brain connectivity using fMRI. More generally, our proposed methods will help to advance knowledge of the dynamical basis of human cognitive function and will provide new tools for investigating neurodevelopmental, psychiatric and neurological disorders such as autism, schizophrenia and Parkinson's disease. The proposed studies are highly relevant to the mission of the NIH Exploratory Innovations in Biomedical Computational Science and Technology Program Announcement (PA 09-219), which seeks to encourage development of innovative advanced computational tools for brain imaging.
描述(由申请人提供):认知信息处理取决于分布式大脑区域之间的动态相互作用。在过去的十年中,功能性磁共振成像(fMRI)已成为研究人脑功能的有力工具。虽然功能磁共振成像研究主要集中在识别在认知任务的执行过程中激活的大脑区域,但越来越多的共识是,认知功能是多个大脑区域之间动态的,依赖于上下文的因果关系相互作用的结果。因此,设计和验证研究这种相互作用的方法具有更大的意义。尽管需求不断增长,但目前用于识别fMRI数据中因果相互作用的方法的准确性仍然知之甚少。这项提案的总体目标是通过开发和测试新的算法和软件来识别分布式大脑区域之间依赖于上下文的因果相互作用,以满足功能磁共振成像的关键需求。我们将首先开发和验证基于多变量动态系统(MDS)框架的新方法,该框架克服了现有方法的几个局限性。然后,我们将比较我们的新方法与其他方法的模拟和真实的fMRI数据的性能。这些研究的重要贡献包括:(1)开发了新的多变量状态空间方法来估计大脑区域之间的因果相互作用;(2)首次使用模拟和实验fMRI数据对MDS以及其他有效的连接方法进行了最详细的评估。总之,这些研究将导致新的和改进的工具,用于分析功能性大脑连接使用功能磁共振成像。更一般地说,我们提出的方法将有助于推进人类认知功能的动力学基础的知识,并将提供新的工具,用于调查神经发育,精神和神经系统疾病,如自闭症,精神分裂症和帕金森氏病。拟议的研究与NIH生物医学计算科学与技术计划公告(PA 09-219)的探索性创新的使命高度相关,该计划旨在鼓励开发用于脑成像的创新先进计算工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VINOD MENON其他文献

VINOD MENON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VINOD MENON', 18)}}的其他基金

Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
  • 批准号:
    10380898
  • 财政年份:
    2021
  • 资助金额:
    $ 19.75万
  • 项目类别:
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
  • 批准号:
    10576946
  • 财政年份:
    2021
  • 资助金额:
    $ 19.75万
  • 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
  • 批准号:
    10200653
  • 财政年份:
    2019
  • 资助金额:
    $ 19.75万
  • 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
  • 批准号:
    10631143
  • 财政年份:
    2019
  • 资助金额:
    $ 19.75万
  • 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
  • 批准号:
    10425350
  • 财政年份:
    2019
  • 资助金额:
    $ 19.75万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    10468844
  • 财政年份:
    2018
  • 资助金额:
    $ 19.75万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    9769805
  • 财政年份:
    2018
  • 资助金额:
    $ 19.75万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: Outcomes and Trajectories
数学障碍的纵向神经认知研究:结果和轨迹
  • 批准号:
    10842461
  • 财政年份:
    2018
  • 资助金额:
    $ 19.75万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    10259850
  • 财政年份:
    2018
  • 资助金额:
    $ 19.75万
  • 项目类别:
Novel Bayesian linear dynamical systems-based methods for discovering human brain circuit dynamics in health and disease
新颖的——贝叶斯——线性——动态——基于系统的——方法——用于发现——人类——大脑——电路——健康和疾病的动力学
  • 批准号:
    9170593
  • 财政年份:
    2016
  • 资助金额:
    $ 19.75万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了