Therapeutic Potential of EPO and its Derivatives for Reducing Blood Pressure
EPO 及其衍生物降低血压的治疗潜力
基本信息
- 批准号:9147229
- 负责人:
- 金额:$ 15.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Abdominal CavityAcuteAdverse effectsAnemiaAnimal ExperimentsAnimalsAnti-Inflammatory AgentsAnti-inflammatoryAntihypertensive AgentsAortaApoptoticAreaArteriesAttenuatedBindingBlast CellBlood CellsBlood PressureBlood Pressure MonitorsBlood VesselsBreathingCardiacCardiac MyocytesCardiovascular systemCathetersControl GroupsCoronaryCoronary arteryDahl Hypertensive RatsDataDevelopmentDietDoseEquilibriumErythrocytesErythropoietinErythropoietin ReceptorExcisionExperimental ModelsGlycoproteinsHeart failureHormonesHourHumanHypertensionImplantInbred SHR RatsIndwelling CatheterInfusion proceduresInhibition of ApoptosisInjection of therapeutic agentIntravenousIsofluraneKidney DiseasesLeft ventricular structureLife ExpectancyLigationMaintenanceMeasuresMediatingMedicalMitochondriaModelingMolecular StructureMyocardial InfarctionMyocardial IschemiaNG-Nitroarginine Methyl EsterNephrosclerosisNerve TissueNitric OxideNitric Oxide PathwayNitric Oxide Signaling PathwayNitric Oxide Synthetase InhibitorPathway interactionsPeptidesPerformancePeripheralPermeabilityPharmaceutical PreparationsPharmacologic SubstanceProcessProductionPropertyPublishingPumpRattusReactive Oxygen SpeciesRecombinant ErythropoietinRecombinantsRegulationRenal MassReportingResearchRisk FactorsRoleSalineSodium ChlorideSodium-Restricted DietStressStrokeSurfaceTailTechniquesTelemetryTestingTherapeuticTimeTissuesTranslationsVasodilationWistar RatsWritingbaseblood pressure reductionblood pressure regulationclinical practicecoronary fibrosishemodynamicsintravenous injectionmyocardial infarct sizingnormotensivenovel therapeutic interventionpre-clinicalpressurepreventprogramsreceptorrecombinant human erythropoietinresearch studyresponsesensor
项目摘要
The broad objective of this program is to explore the vasodilative potential of rhEPO and its non-erythropoietic derivatives and to perform preclinical animal experiments on different models of arterial hypertension to elucidate their mechanism of action and to evaluate their potential for translation into clinical practice in humans.
I. Acute hemodynamic effects of EPO.
Recently published research strongly suggests the erythropoietin binds to a Common receptor and therefore activates anti-apoptotic, anti-inflammatory pathways, and nitric oxide release. Surprisingly, hemodynamic response subsequent to NO activation after EPO administration had never been reported. Objectives of this study were to evaluate the acute hemodynamic and cardiovascular responses to EPO administration, to confirm their NO association, and to test the hypothesis that EPO-induced cardioprotection is mediated through cardiovascular changes related to NO activation. In Experiment 1 after 3000 U/kg of rhEPO was administered intravenously to Wistar rats, arterial blood pressure, monitored via indwelling catheter, almost immediately started progressively to decline, until leveling off 90 minutes after injection at 20% below control level. In Experiment 2 the 25% reduction of mean blood pressure, compared to control group, was observed 2 hrs after intravenous injection of either 3000 or 150 U/kg of rhEPO. Detailed pressure volume loop analyses of cardiac performance (Experiment 3) 2 hrs after intravenous injection of human or rat recombinant EPO (3000U/kg) revealed a significant reduction of systolic function (PRSW was 33% less than control). Reduction of arterial blood pressure and systolic cardiac function in response to rhEPO were blocked in rats pretreated with a non-selective inhibitor of nitric oxide synthase (L-NAME). In Experiment 4, 24 hrs after a permanent ligation of a coronary artery myocardial infarction (MI) measured 263.5% of left ventricle in untreated rats. MI in rats treated with 3000 U/kg of rhEPO immediately after coronary ligation was 56% smaller. Pretreatment with L-NAME did not attenuate the beneficial effect of rhEPO on MI size, while MI size in rats treated with L-NAME alone did not differ from control. Therefore, a single injection of rhEPO resulted in a significant, NO-mediated reduction of systemic blood pressure and corresponding reduction of cardiac systolic function. However, EPO-induced protection of myocardium from ischemic damage is not associated with NO activation or NO-mediated hemodynamic responses.
II. Antihypertensive properties of non-erythropoietic derivatives of EPO
A small peptide, Helix B Surface Peptide (HBSP), also known as ARA290, was synthesized by Araim Pharmaceutical on the basis of a part of the EPO molecule. This peptide binds to a common receptor, EPO receptor hetherocomplex, and does not have pro-thrombotic effects. This peptide was tested in different experimental models and, while it proved to possess strong tissue protective properties, it did not induce blood cell production. Recently we demonstrated that HBSP has a similar potency to rhEPO for increasing the reactive oxygen species (ROS) threshold for induction of the mitochondrial permeability transition by 40%, thus protecting cardiac myocytes from ischemic stress. In the rat model of MI induced by a permanent ligation of the coronary artery, we also demonstrated the equal potency of a single administration of EPO and HBSP for a 50% reduction of resulting MI. In that experimental model the anti-apoptotic and anti-inflammatory potentials of HBSP were equal to those of rhEPO.
In the first experiment, under Isoflurane inhalation narcosis, after recording of arterial blood pressure via catheter inserted into the aorta, we administered either a single intravenous dose of 60 mcg of HBSP (ARA290) or a saline to a normotensive rat. Two hours later the Isoflurane was reintroduced and arterial blood pressure was again measured. The blood pressure after injection of peptide was about 20% lower than after injection of saline. The effect was similar to the effect of rhEPO that we previously reported and was blocked by pretreatment with L-NAME.
In the second experiment the arterial blood pressure reducing effect of HBSP was tested in 3 different experimental rat models of hypertension. Osmotic pumps delivering 0.16 - 0.09 ug/min of HBSP for 8 weeks were implanted into the abdominal cavity of spontaneously hypertensive rats (SHR), salt sensitive Dahl rats consuming a high salt diet (HS), and Wistar rats subjected to a resection of 5/6 of the total renal mass (RMR). WKY, Dahl salt sensitive rats maintained on a low salt diet, and sham operated rats, respectively, served as controls for these 3 models. Blood pressure was measured under Isoflurane narcosis using tail cuff technique. In untreated groups of all three experimental models, systolic blood pressure (SBP) gradually increased to 180-200 mmHg. HBSP infusion completely normalized the SBP in SHR, reduced the SBP by 20% (from 190 to 150 mmHg) in RMR, and prevented the elevation of SBP in Dahl salt sensitive rats maintained on high salt diet. Significant myocardial fibrosis occurring in all 3 groups of untreated hypertensive rats was reduced to the level of controls by HBSP. Significant nephrosclerosis observed in all 3 untreated hypertensive groups was also reduced to the level of controls in treated Dahl and SHR, but not in RMR groups. These results clearly demonstrate potent antihypertensive and antifibrotic properties of HBSP.
In order to investigate antihypertension effect of HBSP for long-term in un-anesthetized, freely-moving animals, during this reporting period, we used implantable blood pressure telemetry sensors in spontaneously hypertensive rats (SHR), treat one half of them with HBSP (0.16 - 0.09 ug/min via mini-osmotic pump) and other half with saline (via mini-osmotic pump) for 8 weeks. At the time this report is written, data are still in the process.
该项目的主要目的是探索rhEPO及其非红细胞衍生物的血管扩张潜能,并在不同的动脉高血压模型上进行临床前动物实验,以阐明其作用机制,并评估其在人类临床实践中的应用潜力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acute hemodynamic effects of erythropoietin do not mediate its cardioprotective properties.
促红细胞生成素的急性血流动力学作用并不介导其心脏保护特性。
- DOI:10.1242/bio.20122378
- 发表时间:2012
- 期刊:
- 影响因子:2.4
- 作者:Ahmet,Ismayil;Lakatta,EdwardG;Talan,MarkI
- 通讯作者:Talan,MarkI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Lakatta其他文献
Edward Lakatta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Lakatta', 18)}}的其他基金
Decreased pacemaker activity in aged sinoatrial node
老年窦房结起搏器活动减少
- 批准号:
8335801 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
Soluble Receptor for Advanced Glycation End Products for Therapeutic Application
用于治疗应用的高级糖基化终产物的可溶性受体
- 批准号:
8552494 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
Effects Of Age And Conditioning Status On Rest And Exercise Cardiac Performance
年龄和体能状态对休息和运动心脏功能的影响
- 批准号:
8931601 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
Matching ATP supply and demand in cardiac pacemaker cells
匹配心脏起搏细胞中的 ATP 供应和需求
- 批准号:
8931611 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
PDE3, PDE4 and PKC regulate local Ca2+ releases and cardiac pacemaker firing
PDE3、PDE4 和 PKC 调节局部 Ca2 释放和心脏起搏器放电
- 批准号:
8736511 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
Age-Associated Changes in Arterial Proteome and Aortic Smooth Muscle Signaling
动脉蛋白质组和主动脉平滑肌信号与年龄相关的变化
- 批准号:
8931487 - 财政年份:
- 资助金额:
$ 15.43万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 15.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 15.43万 - 项目类别:
Operating Grants














{{item.name}}会员




