Reducing serine biosynthesis and utilization as a novel approach for colon cancer prevention
减少丝氨酸生物合成和利用作为预防结肠癌的新方法
基本信息
- 批准号:9505563
- 负责人:
- 金额:$ 22.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:APC geneAnabolismApcMin/+ miceAwardAzoxymethaneCancer EtiologyCarbonCell Culture SystemCell ProliferationCell physiologyCellsCessation of lifeChemopreventive AgentColon CarcinomaColonic AdenomaColonic NeoplasmsColorectal CancerDNA MethylationDevelopmentDietEnzymesEpitheliumEventExcisionFecesFutureGene ExpressionGenetically Engineered MouseGlucoseGoalsGrowthGrowth and Development functionHumanImpairmentIn VitroIncidenceInterventionIntestinal NeoplasmsIntestinesK22 AwardLightMalignant NeoplasmsMediator of activation proteinMetabolicMetabolismMethodsModelingMusNeoplasmsNon-Essential Amino AcidOrganoidsOutcomePathway interactionsPhosphoserine aminotransferasePolypsPreventionPrevention strategyProcessProductionResearch PersonnelRoleSerineSourceStem cellsTestingTumor BurdenTumor Suppressor GenesTumor TissueUnited StatesWorkanticancer researchcancer cellcancer preventioncancer therapycancer typecareercelecoxibclinically relevantcolon cancer preventioncolon growthcolon tumorigenesiscolorectal cancer treatmentdietary manipulationenzyme biosynthesisgastrointestinalimprovedknock-downmetabolomemetabolomicsmethylation patternmicrobiotamouse modelneoplastic cellnovelnovel strategiespreventsmall hairpin RNAtumortumor growthtumor initiationtumor metabolismtumorigenesis
项目摘要
ABSTRACT
My ongoing work has focused on investigating the role of gut luminal and host metabolites in
gastrointestinal neoplasia with a focus on prevention. One such study using the azoxymethane-induced mouse
colon tumor model, demonstrated that targeted metabolite profiling of feces can non-invasively inform on the
presence of colon adenomas. Metabolomic analysis of tumor tissue also revealed aberrant metabolism
including increased serine biosynthesis. Other work has focused on the interplay between luminal and host
metabolism using the APCMin/+ mouse model of intestinal tumorigenesis. In this study, I demonstrated that
administration of the chemopreventive agent celecoxib shifted the gut luminal microbiota and metabolome in
association with reducing intestinal stem cell proliferation and polyp burden. These findings indicate an
important interplay between luminal changes and the host epithelium. In light of these findings I have been
carrying out a study focused on the role of the non-essential amino acid serine in colon neoplasia. This work
demonstrates that status of the tumor suppressor gene APC, loss of which is an early event in colorectal
cancer (CRC) development, controls serine biosynthesis and downstream one-carbon metabolism. Moreover, I
showed that the serine biosynthetic enzyme PSAT1 is elevated in multiple stages of human colon neoplasia
and its high expression is correlated with poor outcome in CRC. Importantly, I've shown that deletion of PSAT1
reduces CRC cell proliferation, an effect that is accentuated by removal of exogenous serine.
The studies that will be executed as part of this K22 award are a natural extension of the work
described above and will directly test whether serine supports colon tumor development and growth. To test
this I will utilize a novel mouse model in which PSAT1 can be knocked down. Mechanistic in vitro work will be
carried out using intestinal organoids and cell culture systems to evaluate how serine utilization supports
neoplastic cell proliferation. Lastly, in light of the known metabolic plasticity of neoplastic cells, I will determine
whether targeting both endogenous and exogenous serine synergistically reduces colon tumor burden. Taken
together, this work has the potential to reveal a novel pathway important for CRC. Beyond the scope of this
award, studies will be carried out to evaluate whether this pathway is a viable target for CRC treatment and
potentially other cancers. Importantly, this award will be key for enabling me to establish an independent
career in cancer research.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David C Montrose其他文献
David C Montrose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David C Montrose', 18)}}的其他基金
Reducing serine biosynthesis and utilization as a novel approach for colon cancer prevention
减少丝氨酸生物合成和利用作为预防结肠癌的新方法
- 批准号:
10115638 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 22.95万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 22.95万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 22.95万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 22.95万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 22.95万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 22.95万 - 项目类别:
Discovery Early Career Researcher Award