Estimating and communicating spatial certainty when childhood cancers co-cluster

估计和传达儿童癌症共簇时的空间确定性

基本信息

  • 批准号:
    9535249
  • 负责人:
  • 金额:
    $ 7.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT There are several recent advances, in disease cluster evaluation that if used collectively could avoid a myriad of statistical faults, including the Texas Sharp Shooter Fallacy. These advances include models that estimate the exceedance probability (EP); defined as the Bayesian probability that the relative risk at a specific location is greater than 1. When applied across continuous space, the EP provides a sensitive identification of disease clusters with varying cluster boundaries and sizes and with explicit, spatially-varying certainty. Furthermore, extending the model to multiple disorders can objectively combine disorders with common spatial patterns thereby enhancing the effective sample size. The problem is that childhood cancer is so rare that the prior distributions for the spatial parameters may unduly influence the results. What we need most is an objective way to combine CC when specific CC have common spatial risk patterns. The long-term goal is to prevent diseases caused by environmental exposures. The overall objective of this application, which is the next step in our long-term goal, is to find the most objective way to pool CC subgroups when they share common spatial risk patterns. Our central hypothesis is that CC have common spatial patterns near some environmental hazards. The hypothesis is formulated based on our preliminary findings. The rationale that underlies the proposed research is that recently developed Bayesian multivariate spatial modeling is the link that we need to mitigate spatial uncertainty and restore public faith in cluster investigations. The central hypothesis will be tested and the objective of this application attained by pursuing the following specific aims: 1. Evaluate case-excess for single CC using univariate geostatistical modeling of EP. We postulate, based on our current studies, that geostatistical modeling of the EP will provide an improved sensitivity for cluster detection by allowing flexible cluster shapes, sizes and statistical certainty. 2, Evaluate case-excess for multiple CC using multivariate geostatistical modeling of EP. We postulate, based on our preliminary studies, that multiple CC share common geographic patterns near some toxic sites and multivariate modeling of the CC will enhance the sensitivity of cluster detection. With respect to expected outcomes, the work proposed in aim 1 will identify significant risk patterns of individual CC near some Texas Superfund Sites. Aim 2 will identify CC with common geographic risk patterns at these locations. This contribution is significant because we live in an era in which the public's vigilance is sought for all environmental risks and the public's input must be encouraged and validated and, most importantly, addressed, objectively. The contribution is innovative because the proposed research combines recent advances to resolve issues in the modeling and reporting of spatial uncertainty in disease cluster investigation.
项目概要/摘要 在疾病集群评估方面有一些最新进展,如果共同使用,可以避免无数的疾病 统计错误,包括德克萨斯神枪手谬误。这些进步包括估计模型 超出概率(EP);定义为特定情况下相对风险的贝叶斯概率 位置大于 1。当应用于连续空间时,EP 提供敏感的识别 具有不同簇边界和大小以及明确的、空间变化的确定性的疾病簇。 此外,将模型扩展到多种疾病可以客观地将疾病与常见疾病结合起来。 空间模式,从而增加有效样本量。问题是儿童癌症非常罕见 空间参数的先验分布可能会对结果产生过度影响。我们最需要的是 当特定 CC 具有共同的空间风险模式时,一种客观的组合 CC 的方法。长期目标是 预防因环境暴露引起的疾病。该应用程序的总体目标是 我们长期目标的下一步是找到最客观的方法来汇集 CC 子组,当它们共享时 常见的空间风险模式。我们的中心假设是,CC 在某些区域附近具有共同的空间模式 环境危害。该假设是根据我们的初步发现制定的。理由是 所提出的研究的基础是最近开发的贝叶斯多元空间模型是链接 我们需要减轻空间不确定性并恢复公众对集群调查的信心。中央 将测试假设,并通过追求以下具体目标来实现本应用程序的目标: 1. 使用 EP 的单变量地质统计模型评估单个 CC 的病例过剩情况。我们假设, 根据我们目前的研究,EP 的地质统计模型将为 通过允许灵活的簇形状、大小和统计确定性来进行簇检测。 2、评估case-excess 使用 EP 多元地质统计模型进行多个 CC。我们假设,根据我们的初步 研究表明,多个 CC 在一些有毒地点附近具有共同的地理模式和多变量模型 CC的使用将提高簇检测的灵敏度。就预期成果而言,工作 目标 1 中提出的目标将确定一些德克萨斯州超级基金站点附近单个 CC 的显着风险模式。目的 2 将识别这些地点具有常见地理风险模式的 CC。这个贡献意义重大 因为我们生活在一个公众对一切环境风险保持警惕的时代, 必须鼓励和验证公众的意见,最重要的是,必须客观地处理公众的意见。这 贡献具有创新性,因为拟议的研究结合了解决问题的最新进展 疾病集群调查中空间不确定性的建模和报告。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Effects of Parent Ages on Birth Defects.
  • DOI:
    10.31080/aspe.2020.03.0312
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thompson, James A
  • 通讯作者:
    Thompson, James A
Estimating racial health disparities among adverse birth outcomes as deviations from the population rates.
将不良出生结果之间的种族健康差异估计为人口比率的偏差。
  • DOI:
    10.1186/s12884-020-2847-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Thompson,JamesA;Suter,MelissaA
  • 通讯作者:
    Suter,MelissaA
Bayesian estimation of potential outcomes for mediation analysis of racial disparity for infant mortality.
婴儿死亡率种族差异中介分析潜在结果的贝叶斯估计。
  • DOI:
    10.21203/rs.3.rs-2874047/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thompson,JA
  • 通讯作者:
    Thompson,JA
The risks of advancing parental age on neonatal morbidity and mortality are U- or J-shaped for both maternal and paternal ages.
  • DOI:
    10.1186/s12887-020-02341-0
  • 发表时间:
    2020-09-28
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Thompson JA
  • 通讯作者:
    Thompson JA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES A THOMPSON其他文献

JAMES A THOMPSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES A THOMPSON', 18)}}的其他基金

Estimating and communicating spatial certainty when childhood cancers co-cluster
估计和传达儿童癌症共簇时的空间确定性
  • 批准号:
    9317237
  • 财政年份:
    2017
  • 资助金额:
    $ 7.43万
  • 项目类别:
Bayesian Risk Modeling of Racial-spatial Interactions Among Childhood Cancer Hist
儿童癌症患者种族空间相互作用的贝叶斯风险模型
  • 批准号:
    7982242
  • 财政年份:
    2010
  • 资助金额:
    $ 7.43万
  • 项目类别:
Geographic modeling of very low birth weights around and near Texas federal super
德克萨斯州联邦超级银行周围和附近极低出生体重的地理模型
  • 批准号:
    7873368
  • 财政年份:
    2010
  • 资助金额:
    $ 7.43万
  • 项目类别:
Bayesian Risk Modeling of Racial-spatial Interactions Among Childhood Cancer Hist
儿童癌症患者种族空间相互作用的贝叶斯风险模型
  • 批准号:
    8139272
  • 财政年份:
    2010
  • 资助金额:
    $ 7.43万
  • 项目类别:
The Joint Risks of Hazadous Air Pollulants Among Childhood Cancer Histotypes
有害空气污染物对儿童癌症组织型的联合风险
  • 批准号:
    7152032
  • 财政年份:
    2006
  • 资助金额:
    $ 7.43万
  • 项目类别:
The Joint Risks of Hazadous Air Pollulants Among Childhood Cancer Histotypes
有害空气污染物对儿童癌症组织型的联合风险
  • 批准号:
    7281970
  • 财政年份:
    2006
  • 资助金额:
    $ 7.43万
  • 项目类别:
The Role of Pesticide Dispersion Within Texas Watershed*
德克萨斯州流域内农药扩散的作用*
  • 批准号:
    6803482
  • 财政年份:
    2003
  • 资助金额:
    $ 7.43万
  • 项目类别:
Pesticide Dispersion in Texas Watersheds in Child Cancer
德克萨斯州流域的农药扩散导致儿童癌症
  • 批准号:
    6743822
  • 财政年份:
    2003
  • 资助金额:
    $ 7.43万
  • 项目类别:

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Standard Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of a Smartphone-Based Crop Disease Detection Application
I-Corps:基于智能手机的农作物病害检测应用程序的翻译潜力
  • 批准号:
    2403496
  • 财政年份:
    2024
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Standard Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Continuing Grant
System development for early detection of infectious disease outbreaks and timely risk assessment
早期发现传染病爆发并及时评估风险的系统开发
  • 批准号:
    23K09755
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Residential Mobility: Implications for the Accuracy of Disease Cluster Detection
住宅流动性:对疾病集群检测准确性的影响
  • 批准号:
    2215114
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Standard Grant
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
  • 批准号:
    10076382
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Grant for R&D
DETECT: A Non-Invasive and Automated Real-Time Disease Detection Tool for Cattle
DETECT:一种针对牛的非侵入性自动化实时疾病检测工具
  • 批准号:
    10072590
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
    Collaborative R&D
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    $ 7.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了