Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System

改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统

基本信息

  • 批准号:
    9287114
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In order to develop a learning health care system (LHCS), VHA leadership must understand where quality improvement is needed via valid and actionable performance measurement and reporting. Performance measurement that serves as an effective tool for systemwide-learning is based on empirical evidence supporting the reliability and validity of measures at each level of decision making, a data-warehouse that provides timely access to relevant data at multiple levels and across multiple different time spans, an analytics engine for processing data and generating actionable information, and an effective reporting system for delivering timely information to the appropriate stakeholders. In addition, a clear focus on outcomes avoids the problem stemming from the proliferation of process measures that reduce the ratio of “signal” (important outcomes) to “noise” (process measures of marginal value). The VHA has developed a variety of methods and measures to capture clinical information and to assess health care quality. Introduced in 2012, the Strategic Analytics for Improvement and Learning Value (SAIL) report provides facility performance information on 28 performance metrics. The SAIL report focuses on facility-level variability across diverse performance metrics. However, there is growing evidence that variation in patient outcomes is greatest at lower levels of the health system. In preliminary work for this application we found similar patterns in employee data. We found that workgroups at the nursing unit level explain a significant proportion of variation in employee satisfaction. At the same time, variability in satisfaction at the facility level was nearly zero. This means that important within-hospital unit-level differences in satisfaction are obscured by a focus upon the facility level as a unit of analysis and reporting. Therefore, sites cannot be distinguished in the basis of average employee satisfaction. Based upon the literature in health care and other fields such as education, we anticipate that this same phenomenon will hold for the outcomes we will analyze. In contrast, the SAIL report, with its reliance on facility-level outcomes and measures, assumes that facility- level variability is reliable while ignoring the contributions of unit-level variance. These assumptions reflect the concept of ecological fallacy and demonstrate a need in the VHA for an analytical model that can provide valid performance information by assessing variation at multiple levels of the health system. Our goal for this project is to advance the science of multi-level health care performance measurement and feedback to support a LHCS. We will build an analytical model that provides a valid and reliable assessment of inpatient outcomes and their structural predictors at multiple levels of the health system, and we will present this data in feedback reports targeted to those front-line clinicians and administrators who can use the results to improve the quality of care. To achieve this goal, we will 1) build a multi-level structural equations model (ML-SEM) using inpatient outcomes (mortality, readmissions, adverse events) and their predictors (e.g. patient disease burden, staffing levels) to simultaneously evaluate variation at the unit level and facility level; and 2) develop templates for displaying facility performance data that are tailored to stakeholder needs and facilitate quality improvement. Constructing a model to assess variation at multiple levels (Aim 1) will begin by using a mixed-effects model to examine variation in outcomes and predictors. Next, we will use a predictive model to identify significant predictors of outcomes. Finally, developing reports using our analytical model results (Aim 2) will use a mixed-methods approach encompassing stakeholder needs assessment and iterative design and usability pilot testing. Our goal is to advance the science of measurement beyond crude measures of overall facility and VISN performance, toward more actionable feedback about sources of variability in performance. This work will meet the needs of a LHCS by leveraging the vast VHA data infrastructure to generate valid and actionable knowledge and effectively conveying it to end users for improving the quality of care for Veterans.
为了发展学习型医疗保健系统(LHCS), VHA领导层必须了解质量

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LAURA A PETERSEN其他文献

LAURA A PETERSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LAURA A PETERSEN', 18)}}的其他基金

Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
  • 批准号:
    10335803
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
  • 批准号:
    10833998
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
  • 批准号:
    10186492
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
  • 批准号:
    9902190
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
  • 批准号:
    9904156
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
  • 批准号:
    7845807
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
  • 批准号:
    7117716
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
  • 批准号:
    7458181
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
  • 批准号:
    6858318
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
  • 批准号:
    7249439
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Attribution of Machine-generated Code for Accountability
机器生成代码的责任归属
  • 批准号:
    DP240102164
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
  • 批准号:
    DP230103043
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
  • 批准号:
    2422394
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Tipuna Project: Intergenerational Healing, Settler Accountability and Decolonising Participatory Action Research in Aotearoa
Tipuna 项目:新西兰的代际疗愈、定居者责任和非殖民化参与行动研究
  • 批准号:
    AH/X008223/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: The Architecture of Accountability in 21st Century Latin America
合作研究:21 世纪拉丁美洲的问责架构
  • 批准号:
    2314749
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Understanding Democracy, Elections, and Political Accountability
会议:了解民主、选举和政治责任
  • 批准号:
    2321010
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ethical Industry 4.0: Embedding Legality, Integrity and Accountability in Digital Manufacturing Ecosystems
道德工业 4.0:将合法性、诚信和责任融入数字制造生态系统
  • 批准号:
    2412678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Integrating Trust and Accountability into Compliance Enforcement for a Secure Internet of Things
职业:将信任和问责融入安全物联网的合规执行中
  • 批准号:
    2237012
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Accountability for Central Bank Digital Currency
协作研究:SaTC:核心:小型:中央银行数字货币的责任
  • 批准号:
    2325477
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了