Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
基本信息
- 批准号:10186492
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAddressAdministratorAdverse eventAffectBenchmarkingCare given by nursesCaregiversCaringClimateClinicalComplexComputing MethodologiesDataData DisplayDecision MakingDimensionsDiscipline of NursingEcological BiasEducationEmployeeEnsureEquationEvaluationFeedbackFosteringGoalsHealth StatusHealth systemHealthcareHealthcare SystemsHospital UnitsHospitalsHumanIndustrial PsychologyIndustrializationInpatientsInterventionKnowledgeLeadershipLearningLiteratureMeasurementMeasuresMethodsModelingNeeds AssessmentNoiseNosocomial InfectionsNursesOutcomeOutcome MeasurePatient-Focused OutcomesPatientsPatternPerformanceProcessProcess MeasureProductivityPsychologyQuality of CareReportingResearchResourcesScienceServicesSignal TransductionSiteSourceStatistical MethodsStatistical ModelsStructureStudentsSystemTechniquesTestingTimeTranslatingValidity and ReliabilityVariantVeteransWorkbaseburden of illnesscomputerized data processingdata infrastructuredata resourcedata warehousedecubitus ulcerdesignevidence baseexperiencefallshealth care qualityhospital readmissionimprovedinsightiterative designmortalitymultilevel analysisnoveloutcome predictionpeerperformance testspredict clinical outcomepredictive modelingprototypereadmission ratessatisfactionstemtoolusability
项目摘要
In order to develop a learning health care system (LHCS), VHA leadership must understand where quality
improvement is needed via valid and actionable performance measurement and reporting. Performance
measurement that serves as an effective tool for systemwide-learning is based on empirical evidence
supporting the reliability and validity of measures at each level of decision making, a data-warehouse that
provides timely access to relevant data at multiple levels and across multiple different time spans, an analytics
engine for processing data and generating actionable information, and an effective reporting system for
delivering timely information to the appropriate stakeholders. In addition, a clear focus on outcomes avoids the
problem stemming from the proliferation of process measures that reduce the ratio of “signal” (important
outcomes) to “noise” (process measures of marginal value).
The VHA has developed a variety of methods and measures to capture clinical information and to assess
health care quality. Introduced in 2012, the Strategic Analytics for Improvement and Learning Value (SAIL)
report provides facility performance information on 28 performance metrics. The SAIL report focuses on
facility-level variability across diverse performance metrics. However, there is growing evidence that variation
in patient outcomes is greatest at lower levels of the health system. In preliminary work for this application we
found similar patterns in employee data. We found that workgroups at the nursing unit level explain a
significant proportion of variation in employee satisfaction. At the same time, variability in satisfaction at the
facility level was nearly zero. This means that important within-hospital unit-level differences in satisfaction are
obscured by a focus upon the facility level as a unit of analysis and reporting. Therefore, sites cannot be
distinguished in the basis of average employee satisfaction. Based upon the literature in health care and other
fields such as education, we anticipate that this same phenomenon will hold for the outcomes we will analyze.
In contrast, the SAIL report, with its reliance on facility-level outcomes and measures, assumes that facility-
level variability is reliable while ignoring the contributions of unit-level variance. These assumptions reflect the
concept of ecological fallacy and demonstrate a need in the VHA for an analytical model that can provide valid
performance information by assessing variation at multiple levels of the health system.
Our goal for this project is to advance the science of multi-level health care performance measurement and
feedback to support a LHCS. We will build an analytical model that provides a valid and reliable assessment of
inpatient outcomes and their structural predictors at multiple levels of the health system, and we will present
this data in feedback reports targeted to those front-line clinicians and administrators who can use the results
to improve the quality of care. To achieve this goal, we will 1) build a multi-level structural equations model
(ML-SEM) using inpatient outcomes (mortality, readmissions, adverse events) and their predictors (e.g. patient
disease burden, staffing levels) to simultaneously evaluate variation at the unit level and facility level; and 2)
develop templates for displaying facility performance data that are tailored to stakeholder needs and facilitate
quality improvement. Constructing a model to assess variation at multiple levels (Aim 1) will begin by using a
mixed-effects model to examine variation in outcomes and predictors. Next, we will use a predictive model to
identify significant predictors of outcomes. Finally, developing reports using our analytical model results (Aim 2)
will use a mixed-methods approach encompassing stakeholder needs assessment and iterative design and
usability pilot testing. Our goal is to advance the science of measurement beyond crude measures of overall
facility and VISN performance, toward more actionable feedback about sources of variability in performance.
This work will meet the needs of a LHCS by leveraging the vast VHA data infrastructure to generate valid and
actionable knowledge and effectively conveying it to end users for improving the quality of care for Veterans.
为了开发一个学习型医疗保健系统(LHCs),VHA领导层必须了解哪里有质量
需要通过有效和可操作的业绩衡量和报告进行改进。性能
作为全系统学习的有效工具的测量是基于经验证据的
支持每个决策级别的措施的可靠性和有效性,数据仓库
提供对多个级别和多个不同时间跨度的相关数据的及时访问、分析
用于处理数据和生成可操作信息的引擎,以及有效的报告系统
向适当的利益相关者提供及时的信息。此外,明确关注结果可以避免
问题源于过程措施的泛滥,这些措施降低了“信号”的比率(重要
结果)到“噪声”(边际价值的过程度量)。
VHA开发了各种方法和措施来捕获临床信息和评估
医疗保健质量。2012年推出的改进和学习价值战略分析(SAIL)
报告提供了有关28个性能指标的设施性能信息。SAIL报告的重点是
各种性能指标之间的设施级别可变性。然而,越来越多的证据表明,变异
在较低级别的卫生系统中,患者的结果最好。在此应用程序的前期工作中,我们
在员工数据中发现了类似的模式。我们发现,护理单位层面的工作组解释了
员工满意度差异较大的比例。与此同时,在满意度方面的变异性
设施水平几乎为零。这意味着医院内部单位层面满意度的重要差异是
将重点放在设施层面,作为分析和报告的一个单位而被掩盖。因此,站点不能
以员工平均满意度为基础进行区分。基于医疗保健和其他领域的文献
在教育等领域,我们预计,同样的现象也将适用于我们将分析的结果。
相比之下,SAIL报告依赖于设施一级的成果和措施,假设该设施-
水平变异是可靠的,而忽略了单位水平方差的贡献。这些假设反映了
生态谬误的概念,并证明在VHA中需要一个分析模型来提供有效的
通过评估卫生系统多个层面的差异来提供绩效信息。
我们这个项目的目标是推动多层次卫生保健绩效衡量的科学和
支持LHC的反馈。我们将构建一个分析模型,为
医疗系统多个层面的住院结果及其结构性预测因素,我们将介绍
反馈报告中的这些数据针对的是可以使用结果的一线临床医生和管理人员
以提高护理质量。为了实现这一目标,我们将1)建立一个多层结构方程模型
(ML-SEM)使用住院结果(死亡率、再入院、不良事件)及其预测因素(例如患者
疾病负担、工作人员水平),以同时评估单位一级和设施一级的差异;以及2)
开发用于显示设施性能数据的模板,这些数据是根据利益相关者的需求量身定做的,便于
质量提升。构建在多个级别上评估变化的模型(目标1)将通过使用
检验结果和预测因素变化的混合效应模型。接下来,我们将使用预测模型来
确定对结果的重要预测因素。最后,使用我们的分析模型结果开发报告(目标2)
将使用包含利益相关者需求评估和迭代设计的混合方法,并
可用性试点测试。我们的目标是推动测量科学的发展,超越粗略的总体测量
设施和VISN性能,对性能变异性的来源提供更具可操作性的反馈。
这项工作将通过利用庞大的VHA数据基础架构来生成有效和
可操作的知识,并有效地将其传达给最终用户,以提高对退伍军人的护理质量。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Beyond Hospital-Level Aggregated Data: A Methodology to Adapt Clinical Data From the Electronic Health Record for Nursing Unit-Level Research.
超越医院级汇总数据:一种将电子健康记录中的临床数据改编用于护理单位级研究的方法。
- DOI:10.1097/mlr.0000000000001972
- 发表时间:2024
- 期刊:
- 影响因子:3
- 作者:Yang,Christine;Kuebeler,MarkK;Jiang,Rebecca;Knox,MelissaK;Wong,JanineJ;Mehta,ParasD;Dorsey,LynetteE;Petersen,LauraA
- 通讯作者:Petersen,LauraA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAURA A PETERSEN其他文献
LAURA A PETERSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAURA A PETERSEN', 18)}}的其他基金
Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
- 批准号:
10335803 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
- 批准号:
10833998 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
- 批准号:
9902190 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
- 批准号:
9287114 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Improving the Measurement of VA Facility Performance to Foster a Learning Healthcare System
改进对 VA 设施绩效的衡量,以培育学习型医疗保健系统
- 批准号:
9904156 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
- 批准号:
7845807 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
- 批准号:
7117716 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
- 批准号:
7458181 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
- 批准号:
6858318 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Financial Incentives to Translate ALLHAT into Practice
将 ALLHAT 转化为实践的经济激励
- 批准号:
7249439 - 财政年份:2005
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




