Reducing Non-Medical Opioid Use: An automatically adaptive mHealth Intervention
减少非医疗阿片类药物的使用:自动适应的移动医疗干预措施
基本信息
- 批准号:9416993
- 负责人:
- 金额:$ 53.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal coordinationAccident and Emergency departmentAcuteAddressAdultArtificial IntelligenceAutomobile DrivingBehaviorCaringClinicalComplementEmergency CareEmergency Department patientEmergency department visitEnsureFutureGuidelinesHealth TechnologyIndividualInjuryInterventionInterviewLeadLearningMedicalMethodologyMonitorOpioidOpioid AnalgesicsOutcomeOutpatientsOverdosePainParticipantPatientsPlayProcessPsychological reinforcementPsychotherapyPublic HealthRandomizedRandomized Clinical TrialsRandomized Controlled TrialsRecording of previous eventsReportingResearchResearch MethodologyResourcesRisk BehaviorsRoleSafetySeveritiesSiteSurveysSystemTelephoneTestingTherapeuticTimeTreatment EfficacyUnited States National Institutes of HealthVoiceWorkadverse outcomebasebehavioral outcomebrief motivational interventionclinical practicedrugged drivingexperiencehigh riskimprovedindividualized medicineinnovationintervention effectlearning progressionmHealthmobile computingmotivational interventionmultidisciplinarynew technologynonmedical useopioid misuseopioid therapyopioid useoverdose riskpost interventionprescription opioidpublic health prioritiespublic health relevancerecruitresponsescreeningskillssuccesstreatment as usual
项目摘要
DESCRIPTION (provided by applicant): In recent years in the U.S., problems associated with opioid prescriptions, including non-medical use and overdose, increased to historically unprecedented levels and represent a public health crisis. Emergency departments (EDs) play an important role in opioid prescribing, particularly to individuals at high risk for adverse opioi-related outcomes. Half of all ED visits are for a painful condition, and one third of all ED visits
result in an opioid being prescribed. Moreover, in our pilot work, a quarter of patients surveyed at the ED study site reported non-medical opioid use in the prior three months. Despite the importance of this problem, strategies to reduce non-medical opioid use after an ED visit have not been well-studied. Our recent trial of a motivational intervention delivered to patients in the
ED by a therapist resulted in modest reductions in non- medical use after the ED visit compared to a control condition. However, the intervention was unable to address the implications of opioids prescribed as a result of the ED encounter on post-ED opioid use behavior. This project will adapt the intervention for delivery after the ED visit through mobile technology in order to directly address the use of ED-provided opioids. Patients (n=600) will be recruited during an ED visit for a randomized controlled trial of the adapted intervention based on having used opioids non-medically in the prior three months and being given an opioid by an ED prescriber. In the intervention condition, interactive voice response calls will repeatedly assess non-medical opioid use and pain level and deliver intervention content. The intervention will include several potential actions that vary in intensity: assessment only, a brief message, extended messaging, or connection to a therapist by phone. Because the most helpful intensity of intervention is unknown and likely to vary between patients, the project will use an artificial intelligence stratey called reinforcement learning (RL). The RL system will continuously "learn" from the success of prior actions in similar situations with similar patients in order to select the action most likelyto reduce non-medical opioid use for each participant during each call. The RCT will be complemented by qualitative interviews to inform later implementation. The specific aims are to: (1) Adapt and enhance an existing motivational intervention to decrease non-medical opioid use after an ED visit by optimizing intervention intensity and duration through RL; (2) Examine the impact of the intervention on non-medical opioid use level during the six months post-ED visit; (3) Examine the impact of the intervention on driving after opioid use, overdose risk behaviors, and subsequent opioid-related ED visits. Secondary Aims are: (1) to examine differences in intervention effects between participants with high and low baseline levels of non-medical opioid use; and (2) to understand barriers and facilitators of implementation. This project will use a highly innovative strategy, artificial intelligence, to address a highly significant problem, non-medical opioid use. Ultimately, this study can lead to reductions in opioid- related harms and move forward the field of mobile health.
描述(由申请人提供):近年来,在美国,与阿片类药物处方相关的问题(包括非医疗使用和过量)增加到历史上前所未有的水平,并构成了公共卫生危机。急诊科 (ED) 在阿片类药物处方中发挥着重要作用,特别是对于阿片类药物相关不良后果高危人群。一半的急诊就诊是因为疼痛,三分之一的急诊就诊是因为疼痛
导致开具阿片类药物。此外,在我们的试点工作中,在急诊研究中心接受调查的四分之一的患者报告在过去三个月内使用了非医疗阿片类药物。尽管这个问题很重要,但在急诊就诊后减少非医疗阿片类药物使用的策略尚未得到充分研究。我们最近对以下地区的患者进行了一项动机干预试验:
与对照情况相比,治疗师的急诊科导致急诊科就诊后非医疗用途的适度减少。然而,干预措施无法解决急诊科开具的阿片类药物对急诊科术后阿片类药物使用行为的影响。该项目将通过移动技术调整急诊就诊后的干预措施,以直接解决急诊科提供的阿片类药物的使用问题。将在急诊就诊期间招募患者 (n=600) 进行随机对照试验,以根据过去三个月内非医疗用途使用阿片类药物并由急诊医生开具阿片类药物的情况进行调整干预措施。在干预条件下,交互式语音应答呼叫将反复评估非医疗阿片类药物的使用和疼痛程度,并提供干预内容。干预措施将包括几种强度不同的潜在行动:仅评估、简短消息、扩展消息或通过电话联系治疗师。由于最有帮助的干预强度是未知的,并且可能因患者而异,因此该项目将使用一种称为强化学习(RL)的人工智能策略。强化学习系统将不断地“学习”之前在类似情况下针对类似患者采取的成功行动,以便在每次通话期间选择最有可能减少每个参与者非医疗阿片类药物使用的行动。随机对照试验将辅以定性访谈,为以后的实施提供信息。具体目标是: (1) 通过 RL 优化干预强度和持续时间,调整和加强现有的动机干预,以减少急诊就诊后非医疗阿片类药物的使用; (2) 检查干预措施对急诊就诊后六个月内非医疗阿片类药物使用水平的影响; (3) 检查干预措施对阿片类药物使用后驾驶、过量风险行为以及随后阿片类药物相关急诊就诊的影响。次要目标是:(1)检查非医疗阿片类药物使用基线水平高和低的参与者之间干预效果的差异; (2) 了解实施的障碍和促进因素。该项目将使用高度创新的策略——人工智能,来解决一个非常重要的问题——非医疗阿片类药物的使用。最终,这项研究可以减少阿片类药物相关的危害,并推动移动医疗领域的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy S B Bohnert其他文献
Amy S B Bohnert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy S B Bohnert', 18)}}的其他基金
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10595496 - 财政年份:2022
- 资助金额:
$ 53.72万 - 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
- 批准号:
10563279 - 财政年份:2022
- 资助金额:
$ 53.72万 - 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
- 批准号:
10700120 - 财政年份:2022
- 资助金额:
$ 53.72万 - 项目类别:
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10313694 - 财政年份:2022
- 资助金额:
$ 53.72万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10027245 - 财政年份:2015
- 资助金额:
$ 53.72万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10162313 - 财政年份:2015
- 资助金额:
$ 53.72万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10165792 - 财政年份:2015
- 资助金额:
$ 53.72万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
9145508 - 财政年份:2015
- 资助金额:
$ 53.72万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8636645 - 财政年份:2014
- 资助金额:
$ 53.72万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8811923 - 财政年份:2014
- 资助金额:
$ 53.72万 - 项目类别:














{{item.name}}会员




