Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
基本信息
- 批准号:10700120
- 负责人:
- 金额:$ 76.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedBehaviorBehavioralCardiovascular PhysiologyCaringCellular PhoneClinicalClinical TrialsDataDisease remissionEffectivenessEmotionsEquipment and supply inventoriesFrequenciesGoalsHealth Services AccessibilityHealthcare SystemsIndividualInterventionKnowledgeLeadMachine LearningMeasuresMental DepressionMental HealthMental Health ServicesMethodsModelingMonitorOutcome AssessmentOutpatientsPathway interactionsPatientsPersonsPharmaceutical PreparationsPhysical activityPopulationPrecision therapeuticsPredictive FactorPsychotherapyPublic HealthQuality of lifeRecording of previous eventsRecoveryResearchSample SizeSamplingSignal TransductionSleepSpeedSurveysSymptomsTechnologyTimeTranslatingWaiting ListsWorkanalytical methodanalytical toolclinical practicedemographicsdensitydepressive symptomsdesigndigital interventiondisabilityevidence baseexperienceimprovedindividualized medicineineffective therapiesinnovationmobile computingnovelpatient responsepatient variabilitypersistent symptompredictive modelingprogramsrecruitsensorsocial engagementtreatment durationtreatment effecttreatment responsetreatment trialwearable devicewearable sensor technology
项目摘要
Abstract
Tailoring care to match patients to the treatment most effective for them has the potential to accelerate
recovery and meaningfully reduce the growing burden of depression. A key barrier to tailoring care is the
absence of objective, real-time methods to effectively predict and assess treatment response. Mobile
technology holds promise to overcome this barrier. Specifically, smartphones and wearable sensors collect
passive, continuous and objective measures of constructs central to depression, such as sleep, physical
activity, cardiovascular function, and social engagement. Studies have demonstrated associations of single
measures from these domains with depression. However, because most prior wearable studies have had
limited sample sizes, they have not been able to synthesize actionable information across multiple domains of
mobile technology data and effectively guide treatment. Our long-term goal is to substantially increase the
effectiveness of depression treatments and the capacity of our mental health care system. Our objective in this
application is to identify factors that can be used to effectively match patients to treatments and track their
recovery. Through the PROviding Mental health Precision Treatment (PROMPT) study, we will complete the
following specific aims: Aim 1) Identify factors that predict which treatment is most likely to reduce depression
symptoms for a specific patient; and Aim 2) Identify passive mobile technology-based measures that serve as
signals of treatment response. To achieve these aims, we will recruit 2,200 subjects from waitlist for outpatient
depression treatment. We will then track patients for six months through wearable sensors, smartphones, and
repeated surveys. For both aims, we will use machine learning approaches to develop comprehensive
prediction models. Our approach is innovative because it applies technology and analytic tools to a large and
diverse sample of subjects receiving treatment under real world conditions. Further, the project is designed to
lead directly to an organization-level intervention that matches patients to treatments and continuously
monitors their response to treatment. Finally, this project is significant because it has the potential to greatly
accelerate recovery by identifying the treatment from which each person is likely to derive the most benefit,
ultimately helping to address the high population burden of depression.
摘要
量身定制的护理,使患者与对他们最有效的治疗相匹配,有可能加速
恢复和有意义地减少抑郁症的负担。定制护理的一个关键障碍是
缺乏客观、实时的方法来有效预测和评估治疗反应。移动的
技术有望克服这一障碍。具体来说,智能手机和可穿戴传感器收集
被动的,持续的和客观的措施,结构中央抑郁症,如睡眠,身体
活动,心血管功能和社会参与。研究表明,
从这些领域的措施与抑郁症。然而,由于大多数先前的可穿戴研究都有
由于样本量有限,他们无法综合多个领域的可操作信息,
移动的技术数据,有效指导治疗。我们的长远目标是大幅增加
抑郁症治疗的有效性和我们精神卫生保健系统的能力。我们的目标是
应用程序是确定可用于有效匹配患者治疗的因素,并跟踪其
复苏通过提供心理健康精确治疗(PROMPT)研究,我们将完成
以下具体目标:目标1)确定预测哪种治疗最有可能减少抑郁症的因素
目标2)确定基于被动移动的技术的措施,
治疗反应的信号。为达致这些目标,我们会从门诊轮候名单中招募2,200名受试者
抑郁症治疗然后,我们将通过可穿戴传感器、智能手机和
重复的调查。对于这两个目标,我们将使用机器学习方法来开发全面的
预测模型我们的方法是创新的,因为它将技术和分析工具应用于一个大的,
在真实的世界条件下接受治疗的受试者的不同样本。此外,该项目旨在
直接导致组织层面的干预,使患者与治疗相匹配,
监测他们对治疗的反应。最后,这个项目意义重大,因为它有潜力大大
通过确定每个人可能从中获得最大益处的治疗来加速康复,
最终帮助解决抑郁症的高人口负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy S B Bohnert其他文献
Amy S B Bohnert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy S B Bohnert', 18)}}的其他基金
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10595496 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
- 批准号:
10563279 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10313694 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Reducing Non-Medical Opioid Use: An automatically adaptive mHealth Intervention
减少非医疗阿片类药物的使用:自动适应的移动医疗干预措施
- 批准号:
9416993 - 财政年份:2016
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10027245 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10162313 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10165792 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
9145508 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8636645 - 财政年份:2014
- 资助金额:
$ 76.27万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8811923 - 财政年份:2014
- 资助金额:
$ 76.27万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 76.27万 - 项目类别:
Research Grant