Smart Anatomic Recognition System to Guide Emergency Intubation and Resuscitation
智能解剖识别系统指导紧急插管和复苏
基本信息
- 批准号:8453607
- 负责人:
- 金额:$ 24.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAlgorithmsAmbulancesAnatomic structuresAnatomyBrain DeathBrain InjuriesCessation of lifeClinical TrialsCodeComputer Vision SystemsComputer softwareComputersCouplingCritical CareDestinationsDevicesDistalEmergency SituationFailureFeasibility StudiesFeedbackGoalsHospitalsHumanHuman ResourcesImageImageryInstructionIntubationKnowledgeLaryngoscopesLaryngoscopyLeftLifeLightLocationLungMachine LearningManikinsMarketingMedical DeviceMedical StudentsMilitary HospitalsMilitary PersonnelOpticsOutcomeOutcome MeasureOxygenParamedical PersonnelPatientsPhasePhysiciansProceduresResuscitationSalesSmall Business Innovation Research GrantStructureSystemTestingTimeTracheaTubeVisualcommercial applicationdesignendotrachealexperienceflexibilityimage processingimprovedinformation displaylaptoplight weightnew technologynovelphase 1 studypublic health relevancesecondary outcomesimulationsuccess
项目摘要
DESCRIPTION (provided by applicant): Over 3 million emergency intubations are performed in the US every year and failure rates can be as high as 50% (3-5). Success is highly dependent on how frequently the responder performs this life-saving procedure on humans (6). Brio Device, LLC, an airway management medical device company, is addressing the need to decouple the success of the procedure from the experience of the user with their "smart" intubation device which integrates anatomic structure recognition algorithms and visual guidance feedback with an articulating stylet. Brio's intubation device is specifically designed fo the needs of emergency responders, such as paramedics, emergency department personnel, code teams in hospitals and military medics, who often arrive at the patient first. The smart intubation device will reduce failure rates by providing the user with visual instruction of the correct path to the trachea as he places the endotracheal tube. The guidance software uses machine learning and computer vision algorithms to recognize the anatomy and determine the path to insert the tube. Ultimately, the intubation device will include both a guidance display on an LCD screen and an optical stylet that has single-axis angulation control of the distal tip. For the purpose of this Phase I study, a laptop or desktop computer will be used for the image processing and the guidance display that accompanies the articulating stylet. The long-term goal is to create a device that is compact, light-weight and portable to suit the needs of ambulances and hospital crash carts. The hypothesis for this study is that by incorporating a video guidance display with an articulating stylet, inexperienced users will be more successful in correctly placing the endotracheal tube using this device compared to direct laryngoscopy. To achieve this goal, image processing and machine learning algorithms will be developed to recognize key anatomic structures in the airway. Software will also be developed determine the path the tube should follow and to display this information for the user. Finally, the efficacy of the device will be validated in airway simulation mannequins with medical students serving as the inexperienced users. Phase II will focus on integrating the guidance software, articulating optical stylet and display into a portable device with embedded hardware and software contained within the stylet handle. At completion of Phase II, the device will be ready for clinica trials and FDA testing. Brio will enter the $20 billion airway market with its intubation device. Initial sales will begin with anesthesiologists who are early adopters of new technology to assist with difficult airways. Brio will market its product to ~327,000 clinicians who use intubation devices. The U.S. addressable market for emergency intubation is ~$900M for the 41,000 ambulances and 5,800 emergency departments and hospital code teams.
描述(由申请人提供):美国每年有超过300万例急诊插管,失败率可高达50%(3-5)。成功与否在很大程度上取决于急救人员对人类进行这种救生手术的频率(6)。Brio设备有限责任公司是一家气道管理医疗设备公司,该公司正在解决将手术成功与用户体验分离的需求,他们的“智能”插管设备集成了解剖结构识别算法和视觉引导反馈,具有清晰的风格。Brio的插管装置是专门为紧急救援人员的需求而设计的,比如护理人员、急诊科人员、医院的急救小组和军事医务人员,他们通常最先到达病人身边。当用户放置气管内插管时,智能插管装置将为用户提供正确的气管路径的视觉指导,从而降低失败率。引导软件使用机器学习和计算机视觉算法来识别解剖结构并确定插入导管的路径。最终,插管装置将包括一个LCD屏幕上的引导显示器和一个具有单轴角度控制远端尖端的光学样式。为了第一阶段研究的目的,一台笔记本电脑或台式电脑将用于图像处理和伴随发音风格的引导显示。长期目标是创造一种体积小、重量轻、便于携带的设备,以适应救护车和医院急救车的需要。本研究的假设是,与直接喉镜相比,通过结合具有发音风格的视频引导显示,经验不足的用户将更成功地使用该设备正确放置气管内管。为了实现这一目标,将开发图像处理和机器学习算法来识别气道中的关键解剖结构。还将开发软件,确定管道应该遵循的路径,并为用户显示此信息。最后,该设备的有效性将在气道模拟人体模型上进行验证,医学生作为没有经验的使用者。第二阶段将专注于将引导软件、光学样式和显示器集成到一个便携式设备中,该设备包含在样式手柄内的嵌入式硬件和软件。二期完成后,该设备将准备进行临床试验和FDA测试。Brio将凭借其插管设备进入200亿美元的气道市场。最初的销售将从麻醉师开始,他们是新技术的早期采用者,以协助困难的气道。Brio将向约32.7万名使用插管设备的临床医生推销其产品。美国紧急插管的潜在市场约为9亿美元,需要41,000辆救护车和5,800个急诊科和医院急救小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura L McCormick其他文献
Laura L McCormick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura L McCormick', 18)}}的其他基金
Articulating Video Stylet for Improved Intubation Success Rates
铰接视频管芯以提高插管成功率
- 批准号:
10009450 - 财政年份:2016
- 资助金额:
$ 24.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.47万 - 项目类别:
Research Grant














{{item.name}}会员




