Smart Anatomic Recognition System to Guide Emergency Intubation and Resuscitation
智能解剖识别系统指导紧急插管和复苏
基本信息
- 批准号:8453607
- 负责人:
- 金额:$ 24.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAlgorithmsAmbulancesAnatomic structuresAnatomyBrain DeathBrain InjuriesCessation of lifeClinical TrialsCodeComputer Vision SystemsComputer softwareComputersCouplingCritical CareDestinationsDevicesDistalEmergency SituationFailureFeasibility StudiesFeedbackGoalsHospitalsHumanHuman ResourcesImageImageryInstructionIntubationKnowledgeLaryngoscopesLaryngoscopyLeftLifeLightLocationLungMachine LearningManikinsMarketingMedical DeviceMedical StudentsMilitary HospitalsMilitary PersonnelOpticsOutcomeOutcome MeasureOxygenParamedical PersonnelPatientsPhasePhysiciansProceduresResuscitationSalesSmall Business Innovation Research GrantStructureSystemTestingTimeTracheaTubeVisualcommercial applicationdesignendotrachealexperienceflexibilityimage processingimprovedinformation displaylaptoplight weightnew technologynovelphase 1 studypublic health relevancesecondary outcomesimulationsuccess
项目摘要
DESCRIPTION (provided by applicant): Over 3 million emergency intubations are performed in the US every year and failure rates can be as high as 50% (3-5). Success is highly dependent on how frequently the responder performs this life-saving procedure on humans (6). Brio Device, LLC, an airway management medical device company, is addressing the need to decouple the success of the procedure from the experience of the user with their "smart" intubation device which integrates anatomic structure recognition algorithms and visual guidance feedback with an articulating stylet. Brio's intubation device is specifically designed fo the needs of emergency responders, such as paramedics, emergency department personnel, code teams in hospitals and military medics, who often arrive at the patient first. The smart intubation device will reduce failure rates by providing the user with visual instruction of the correct path to the trachea as he places the endotracheal tube. The guidance software uses machine learning and computer vision algorithms to recognize the anatomy and determine the path to insert the tube. Ultimately, the intubation device will include both a guidance display on an LCD screen and an optical stylet that has single-axis angulation control of the distal tip. For the purpose of this Phase I study, a laptop or desktop computer will be used for the image processing and the guidance display that accompanies the articulating stylet. The long-term goal is to create a device that is compact, light-weight and portable to suit the needs of ambulances and hospital crash carts. The hypothesis for this study is that by incorporating a video guidance display with an articulating stylet, inexperienced users will be more successful in correctly placing the endotracheal tube using this device compared to direct laryngoscopy. To achieve this goal, image processing and machine learning algorithms will be developed to recognize key anatomic structures in the airway. Software will also be developed determine the path the tube should follow and to display this information for the user. Finally, the efficacy of the device will be validated in airway simulation mannequins with medical students serving as the inexperienced users. Phase II will focus on integrating the guidance software, articulating optical stylet and display into a portable device with embedded hardware and software contained within the stylet handle. At completion of Phase II, the device will be ready for clinica trials and FDA testing. Brio will enter the $20 billion airway market with its intubation device. Initial sales will begin with anesthesiologists who are early adopters of new technology to assist with difficult airways. Brio will market its product to ~327,000 clinicians who use intubation devices. The U.S. addressable market for emergency intubation is ~$900M for the 41,000 ambulances and 5,800 emergency departments and hospital code teams.
描述(由申请人提供):每年在美国进行超过300万次紧急插管,失败率可能高达50%(3-5)。成功高度取决于响应者对人类执行这种挽救生命的程序的频率(6)。 Airway Management Medical Device Company,Brio Device,LLC正在解决将程序的成功与用户的“智能”插管设备相结合的需求,该插管设备将解剖结构识别算法和视觉指导反馈集成到了与明确的款式。 Brio的插管设备是专门针对紧急响应者的需求设计的,例如护理人员,急诊室人员,医院和军事医务人员的代码团队,他们经常首先到达患者。智能插管设备将通过向用户提供气管内气管管的正确路径的视觉指示来降低故障率。指南软件使用机器学习和计算机视觉算法来识别解剖结构并确定插入管的路径。最终,插管设备将在LCD屏幕上包括指导显示,以及具有对远端尖端的单轴角度控制的光学样式。出于本阶段研究的目的,将使用笔记本电脑或台式计算机进行图像处理以及伴随旋转式款式的指导显示。长期目标是创建一种紧凑,轻巧且便携式的设备,以满足救护车和医院撞车的需求。 这项研究的假设是,通过将视频指南显示与表达的款式结合在一起,没有经验的用户将更成功地使用该设备正确放置气管管与直接喉镜检查相比。为了实现这一目标,将开发图像处理和机器学习算法,以识别气道中的关键解剖结构。还将开发软件确定管子应遵循的路径并为用户显示此信息。最后,该设备的功效将在气道模拟人体模特中得到验证,医学生作为没有经验的用户。第二阶段将专注于集成指导软件,表达光学款式,并将显示器显示为带有嵌入式硬件和软件的便携式设备。 II期完成后,该设备将准备好进行临床试验和FDA测试。 Brio将使用其插管设备进入200亿美元的气道市场。最初的销售将从麻醉师开始,这些麻醉师是新技术的早期采用者,以协助呼吸道困难。 Brio将向使用插管设备的约327,000名临床医生推销其产品。 41,000辆救护车和5,800个急诊部门和医院代码团队的美国紧急插管市场可寻址市场约为9亿美元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura L McCormick其他文献
Laura L McCormick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura L McCormick', 18)}}的其他基金
Articulating Video Stylet for Improved Intubation Success Rates
铰接视频管芯以提高插管成功率
- 批准号:
10009450 - 财政年份:2016
- 资助金额:
$ 24.47万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别: