VA ASSIST Project
VA 协助项目
基本信息
- 批准号:8182131
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced Malignant NeoplasmAdverse effectsAgeAlcoholismAnorexiaBenchmarkingBipolar DisorderCancer PatientCapitalCaregiversCaringCase MixesCharacteristicsChronicChronic DiseaseClinicalClinical ServicesColorectalColorectal CancerComorbidityComplexComputerized Medical RecordDataDevelopmentDiagnosisDiagnostic Neoplasm StagingDiseaseDyspneaEffectivenessElderlyEligibility DeterminationEthnic OriginEtiologyEvaluationFacility ControlsFamilyFatigueFundingGenderGuidelinesHealth Services ResearchHealthcare SystemsHourInpatientsInterventionInvestmentsLeadershipLifeLinear RegressionsLinkLos AngelesLungMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMedicalMedicareMental DepressionMethodologyMetricModelingNational Cancer InstituteNausea and VomitingNeeds AssessmentNon-Small-Cell Lung CarcinomaNursesNursing StaffOutcomeOutpatientsPainPalliative CarePatientsPerformancePersonsPhysiciansPoliciesProcessProcess MeasureProtocols documentationQuality IndicatorQuality of CareQuality of lifeRaceRecording of previous eventsRegistered nurseResearchResourcesSamplingSchizophreniaSelection for TreatmentsServicesSolid NeoplasmStagingSubstance abuse problemSupportive careSymptomsSystemToxic effectTrainingTranslatingUncertaintyUniversitiesVariantVeteransWorkloadadvanced diseaseaustinbasecancer carecohortcostdata modelingevidence baseexperiencehealth care qualityneoplasm registryoncologypalliativesatisfactionscreeningsevere mental illnesstool
项目摘要
Objectives: Using a national random sample of veterans diagnosed with colorectal and nonsmall cell lung
cancer drawn from the VA national cancer registry, we will use the Cancer Quality-ASSIST indicator set to
evaluate the overall quality of veterans' supportive cancer care, as well as:
1. Patient-level factors and facility factors that may be associated with overall quality, and
2. Whether palliative care services use is associated with higher quality supportive care.
Research Plan: We will use the VA national cancer registry and link it to Austin data in order to identify
approximately 750 veterans with advanced lung and colorectal cancer. We will conduct remote chart
abstraction using the VA electronic medical record and an Access graphical user data entry tool.
Methodology: A cohort of veterans with advanced cancer will be developed by obtaining data about incident
cases in 2008 with metastatic disease. We will also obtain data about earlier stage incident cases for the
previous 2 years. We will link these files with Austin data (patient treatment files) to determine preliminary
eligibility (based on inpatient, outpatient usage and disease status). PTF files will provide patient data to
supplement patient characteristics obtained from chart review. We will link patient data to KLFMenu files to
characterize facilities. Following revision of the Cancer Quality ASSIST guidelines and quality indicator
abstraction tool,oncology and other experienced nurses with a background in chart abstraction will train using
the ASSIST guidelines and protocol to achieve an initial kappa for key variables of 0.8 or higher. Nurses will
follow an abstraction protocol of approximately 2.75 hours / case to evaluate the quality of symptoms related to
cancer and its complications, treatment-related toxicities, and information and care planning needs. Palliative
care service use and descriptions will be obtained from chart review. Analyses will evaluate the overall quality
of supportive cancer care, and control for age, gender, type of cancer, stage, co-morbidity, as well as the
analytic variables of race / ethnicity, serious mental illnesses, and palliative care service use. Complete models
will control for patient and facility factors. Given likely selection effects, we will explore the use of treatment
selection models including propensity matching and instrumental variable analysis to evaluate the effect of
service use. We will attempt multivariable linear regression and explore count data models for main models
and consider evaluating facility effects with fixed effects and multi-level approaches.
Results: This is a new project and results have not yet been obtained.
Significance: Information on the quality of supportive care management, veterans who are particularly
vulnerable and may receive lower quality supportive care, and the effectiveness of palliative care services in
addressing these issues is urgently needed to information programmatic development, and other research and
clinical priorities.
目标:使用诊断患有结直肠癌和非小细胞肺的退伍军人的全国随机样本
癌症来自 VA 国家癌症登记处,我们将使用癌症质量-ASSIST 指标集来
评估退伍军人支持性癌症护理的整体质量,以及:
1. 可能与整体质量相关的患者层面因素和设施因素,以及
2. 姑息治疗服务的使用是否与更高质量的支持治疗相关。
研究计划:我们将使用 VA 国家癌症登记处并将其与奥斯汀数据联系起来,以便识别
大约 750 名退伍军人患有晚期肺癌和结直肠癌。我们将进行远程图表
使用 VA 电子病历和 Access 图形用户数据输入工具进行抽象。
方法:通过获取有关事件的数据,将开发一组患有晚期癌症的退伍军人
2008年有转移性疾病病例。我们还将获取有关早期事件案例的数据
前2年。我们将把这些文件与奥斯汀数据(患者治疗文件)联系起来,以确定初步的
资格(基于住院患者、门诊患者的使用情况和疾病状况)。 PTF 文件将提供患者数据
补充从图表审查中获得的患者特征。我们将患者数据链接到 KLFMenu 文件
表征设施。癌症质量 ASSIST 指南和质量指标修订后
抽象工具、肿瘤科和其他具有图表抽象背景的经验丰富的护士将使用
ASSIST 指南和协议,以实现关键变量的初始 kappa 为 0.8 或更高。护士会
遵循大约 2.75 小时/病例的抽象方案来评估与以下相关的症状的质量
癌症及其并发症、治疗相关的毒性以及信息和护理计划需求。姑息治疗
护理服务的使用和描述将从图表审查中获得。分析将评估整体质量
支持性癌症护理,并控制年龄、性别、癌症类型、分期、合并症以及
种族/族裔、严重精神疾病和姑息治疗服务使用的分析变量。型号齐全
将控制患者和设施因素。考虑到可能的选择效应,我们将探索治疗的使用
选择模型,包括倾向匹配和工具变量分析,以评估效果
服务使用。我们将尝试多元线性回归并探索主要模型的计数数据模型
并考虑采用固定效应和多层次方法评估设施效应。
结果:这是一个新项目,尚未获得结果。
意义:有关支持性护理管理质量的信息,特别是退伍军人
弱势群体,可能会接受较低质量的支持性护理,以及姑息治疗服务的有效性
迫切需要解决这些问题,以促进信息规划的发展以及其他研究和
临床优先事项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Lorenz其他文献
Karl Lorenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Lorenz', 18)}}的其他基金
Improving Palliative Measurement Application with Computer-Assisted-Abstraction Study
通过计算机辅助抽象研究改进姑息测量应用
- 批准号:
10305693 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Improving Palliative Measurement Application with Computer-Assisted-Abstraction Study
通过计算机辅助抽象研究改进姑息测量应用
- 批准号:
10216351 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




