VA ASSIST Project
VA 协助项目
基本信息
- 批准号:8182131
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced Malignant NeoplasmAdverse effectsAgeAlcoholismAnorexiaBenchmarkingBipolar DisorderCancer PatientCapitalCaregiversCaringCase MixesCharacteristicsChronicChronic DiseaseClinicalClinical ServicesColorectalColorectal CancerComorbidityComplexComputerized Medical RecordDataDevelopmentDiagnosisDiagnostic Neoplasm StagingDiseaseDyspneaEffectivenessElderlyEligibility DeterminationEthnic OriginEtiologyEvaluationFacility ControlsFamilyFatigueFundingGenderGuidelinesHealth Services ResearchHealthcare SystemsHourInpatientsInterventionInvestmentsLeadershipLifeLinear RegressionsLinkLos AngelesLungMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMedicalMedicareMental DepressionMethodologyMetricModelingNational Cancer InstituteNausea and VomitingNeeds AssessmentNon-Small-Cell Lung CarcinomaNursesNursing StaffOutcomeOutpatientsPainPalliative CarePatientsPerformancePersonsPhysiciansPoliciesProcessProcess MeasureProtocols documentationQuality IndicatorQuality of CareQuality of lifeRaceRecording of previous eventsRegistered nurseResearchResourcesSamplingSchizophreniaSelection for TreatmentsServicesSolid NeoplasmStagingSubstance abuse problemSupportive careSymptomsSystemToxic effectTrainingTranslatingUncertaintyUniversitiesVariantVeteransWorkloadadvanced diseaseaustinbasecancer carecohortcostdata modelingevidence baseexperiencehealth care qualityneoplasm registryoncologypalliativesatisfactionscreeningsevere mental illnesstool
项目摘要
Objectives: Using a national random sample of veterans diagnosed with colorectal and nonsmall cell lung
cancer drawn from the VA national cancer registry, we will use the Cancer Quality-ASSIST indicator set to
evaluate the overall quality of veterans' supportive cancer care, as well as:
1. Patient-level factors and facility factors that may be associated with overall quality, and
2. Whether palliative care services use is associated with higher quality supportive care.
Research Plan: We will use the VA national cancer registry and link it to Austin data in order to identify
approximately 750 veterans with advanced lung and colorectal cancer. We will conduct remote chart
abstraction using the VA electronic medical record and an Access graphical user data entry tool.
Methodology: A cohort of veterans with advanced cancer will be developed by obtaining data about incident
cases in 2008 with metastatic disease. We will also obtain data about earlier stage incident cases for the
previous 2 years. We will link these files with Austin data (patient treatment files) to determine preliminary
eligibility (based on inpatient, outpatient usage and disease status). PTF files will provide patient data to
supplement patient characteristics obtained from chart review. We will link patient data to KLFMenu files to
characterize facilities. Following revision of the Cancer Quality ASSIST guidelines and quality indicator
abstraction tool,oncology and other experienced nurses with a background in chart abstraction will train using
the ASSIST guidelines and protocol to achieve an initial kappa for key variables of 0.8 or higher. Nurses will
follow an abstraction protocol of approximately 2.75 hours / case to evaluate the quality of symptoms related to
cancer and its complications, treatment-related toxicities, and information and care planning needs. Palliative
care service use and descriptions will be obtained from chart review. Analyses will evaluate the overall quality
of supportive cancer care, and control for age, gender, type of cancer, stage, co-morbidity, as well as the
analytic variables of race / ethnicity, serious mental illnesses, and palliative care service use. Complete models
will control for patient and facility factors. Given likely selection effects, we will explore the use of treatment
selection models including propensity matching and instrumental variable analysis to evaluate the effect of
service use. We will attempt multivariable linear regression and explore count data models for main models
and consider evaluating facility effects with fixed effects and multi-level approaches.
Results: This is a new project and results have not yet been obtained.
Significance: Information on the quality of supportive care management, veterans who are particularly
vulnerable and may receive lower quality supportive care, and the effectiveness of palliative care services in
addressing these issues is urgently needed to information programmatic development, and other research and
clinical priorities.
目标:使用诊断为结直肠和非小细胞肺的退伍军人的国家随机样本
癌症是从VA国家癌症注册中心得出的,我们将使用设置的癌症质量辅助指标
评估退伍军人支持性癌症护理的整体质量,以及:
1。可能与总体质量相关的患者级因素和设施因素,
2。姑息治疗服务是否与更高质量的支持护理有关。
研究计划:我们将使用VA国家癌症注册表并将其链接到Austin数据以识别
大约750名退伍军人患有晚期肺癌和结直肠癌。我们将进行远程图表
使用VA电子病历和访问图形用户数据输入工具抽象。
方法论:通过获取有关事件的数据,将开发患有晚期癌症的退伍军人队列
2008年患有转移性疾病的病例。我们还将获得有关早期阶段事件案例的数据
前2年。我们将将这些文件与Austin数据(患者治疗文件)联系起来,以确定初步
资格(基于住院,门诊使用和疾病状况)。 PTF文件将为患者数据提供
从图表审查获得的补充患者特征。我们将将患者数据与KLFMENU文件链接到
特征设施。经过修改癌症质量协助指南和质量指标
抽象工具,肿瘤学和其他具有图表抽象背景的经验丰富的护士将使用
辅助指南和协议,以实现0.8或更高的关键变量的初始KAPPA。护士会
遵循大约2.75小时 /案例的抽象方案,以评估与
癌症及其并发症,与治疗相关的毒性以及信息和护理计划需求。姑息治疗
护理服务的使用和描述将从图表审查中获得。分析将评估整体质量
支持性癌症护理,以及对年龄,性别,癌症类型,阶段,合并症的控制以及
种族 /种族,严重的精神疾病和姑息治疗服务的使用分析变量。完整的型号
将控制患者和设施因素。鉴于可能的选择效果,我们将探索治疗的使用
选择模型,包括倾向匹配和仪器可变分析,以评估
服务使用。我们将尝试多变量线性回归并探索主要模型的计数数据模型
并考虑通过固定效果和多层次方法评估设施效应。
结果:这是一个新项目,尚未获得结果。
意义:有关支持护理管理质量的信息,特别是退伍军人
易受伤害,可能会获得较低的质量支持护理,以及在
迫切需要解决这些问题的信息编程开发以及其他研究以及
临床重点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Lorenz其他文献
Karl Lorenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Lorenz', 18)}}的其他基金
Improving Palliative Measurement Application with Computer-Assisted-Abstraction Study
通过计算机辅助抽象研究改进姑息测量应用
- 批准号:
10305693 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Improving Palliative Measurement Application with Computer-Assisted-Abstraction Study
通过计算机辅助抽象研究改进姑息测量应用
- 批准号:
10216351 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Center for the Promotion of Cancer Health Equity (CePCHE)
癌症健康公平促进中心 (CePCHE)
- 批准号:
10557579 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multilevel factors associated with disparities in the use of targeted cancer therapies in Medicare
与医疗保险中靶向癌症治疗使用差异相关的多层次因素
- 批准号:
10830588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
- 批准号:
10736347 - 财政年份:2023
- 资助金额:
-- - 项目类别: