Flexible Statistical Methods for Complex Survival Data in Biomedical Studies
生物医学研究中复杂生存数据的灵活统计方法
基本信息
- 批准号:8448221
- 负责人:
- 金额:$ 18.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2016-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdmixtureAlgorithmsArsenicClinical ResearchClinical TrialsCohort StudiesComplementComplexComputer softwareCox Proportional Hazards ModelsDataData AnalysesData SetDevelopmentDiseaseEpidemiologic StudiesEquationEtiologyEventFailureGoalsHealthHumanLeadLeast-Squares AnalysisLinear RegressionsLiteratureLog-Linear ModelsLongitudinal StudiesMedicalMethodologyMethodsModelingNested Case-Control StudyNew YorkPerformancePlayPopulationProbabilityProceduresPropertyPublishingResearchResearch DesignResearch PersonnelResearch Project GrantsRoleSamplingScientistSpecific qualifier valueStatistical MethodsStatistical ModelsStructureSurvival AnalysisTechnologyTestingTheoretical StudiesTimeUniversitiesWeightWomen&aposs HealthWorkbasecase controlcohortdesigndisorder preventionexpectationflexibilityhazardimprovedinnovationinterestnoveloutcome forecastpublic health relevanceresearch and developmentsimulationsoundtheoriestooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): The broad, long-term objectives of this research are the developments of new statistical methodology for the analysis of survival data from both epidemiological studies and clinical trials. Significant progress has been made in statistical modeling and inference in survival data analysis; however, there are still many open questions and emerging challenges posed by new study designs, advanced technologies, as well as the growing scale and complexity of medical studies. In this proposed research, we will explore two general classes of semiparametric models, the transformation model and the accelerated failure time model, for analyzing complex survival data. These models not only are complements to Cox's proportional hazards model, but also provide general regression frameworks and possibly better strategies for modeling survival data. Thus, they play important roles in many biomedical applications by offering comprehensive survival analysis. We seek to develop statistically sound methods that not only make proper use of data information and structure but also are powerful and computationally efficient. Motivated by problems arising from the investigators' collaborative work on the New York University Women's Health Study (NYUWHS) and the Health Effects of Arsenic Longitudinal Study (HEALS), our methodology developments include the following four specific aims: (1.) To explore a broad class of linear transformation models in nested case-control (NCC) studies; (2.) To investigate efficient estimation of the accelerated failure time (AFT) model in case-cohort (CC) and nested case-control studies through a unified likelihood-based approach; (3.) To develop semiparametric Bayesian inference methods for the AFT cure model for the analysis of survival data from cohort studies or clinical trials in an admixture population with susceptible and non-susceptible (cured) subjects; (4.) To study partially linear regression modeling and the associated inference procedures for censored survival data from cohort studies or clinical trials. Results from the proposed project will be relevant and applicable to many biomedical studies. In all the specific aims, we will study the theoretical properties of the proposed estimators, and develop reliable numerical algorithms for implementing the proposed estimation methods. Special effort will also be devoted to developing and disseminating software for practitioners. We will carry out extensive simulation studies to evaluate relevance of the theory and the finite sample performance of the proposed estimators. We will also investigate the performance of the proposed methods on published datasets, compare them with existing approaches and demonstrate their applications in major clinical and epidemiological studies, including the NYUWHS and the HEALS. 1
描述(由申请人提供):这项研究的广泛、长期目标是开发新的统计方法,用于分析流行病学研究和临床试验的生存数据。在生存数据分析的统计建模和推断方面取得了重大进展;然而,新的研究设计、先进的技术以及不断增长的规模和复杂性的医学研究仍然提出了许多悬而未决的问题和新的挑战。在这项拟议的研究中,我们将探索两类一般的半参数模型,即转换模型和加速失效时间模型,用于分析复杂的生存数据。这些模型不仅是对考克斯比例风险模型的补充,而且还提供了通用的回归框架和可能更好的生存数据建模策略。因此,通过提供全面的生存分析,它们在许多生物医学应用中扮演着重要的角色。我们寻求开发统计上可靠的方法,这些方法不仅适当地利用数据、信息和结构,而且功能强大,计算效率高。由于纽约大学妇女健康研究(NYUWHS)和砷纵向研究对健康的影响(HeALS)的研究人员共同工作中出现的问题,我们的方法学发展包括以下四个具体目标:(1)探索巢式病例对照研究中广泛的线性变换模型;通过统一的似然方法研究病例队列(CC)和嵌套病例对照研究中加速失效时间(AFT)模型的有效估计;开发AFT治愈模型的半参数贝叶斯推断方法,用于分析来自队列研究或临床试验的生存数据,这些数据来自混合人群中的易感和非易感(治愈)受试者;研究来自队列研究或临床试验的删失生存数据的部分线性回归模型和相关推断程序。拟议项目的结果将相关并适用于许多生物医学研究。在所有的具体目标中,我们将研究所提出的估计器的理论性质,并开发可靠的数值算法来实现所提出的估计方法。还将特别努力为从业人员开发和传播软件。我们将进行广泛的模拟研究,以评估理论的相关性和所提出的估计器的有限样本性能。我们还将在已发表的数据集上调查建议方法的性能,将它们与现有方法进行比较,并展示它们在主要临床和流行病学研究中的应用,包括NYUWHS和HEALS。1
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On estimation of linear transformation models with nested case-control sampling.
关于嵌套病例对照抽样线性变换模型的估计。
- DOI:10.1007/s10985-011-9203-3
- 发表时间:2012-01
- 期刊:
- 影响因子:1.3
- 作者:Lu W;Liu M
- 通讯作者:Liu M
A Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout.
具有信息丢失的纵向数据的半参数边缘化模型。
- DOI:10.1155/2012/734341
- 发表时间:2012
- 期刊:
- 影响因子:1.1
- 作者:Liu,Mengling;Lu,Wenbin
- 通讯作者:Lu,Wenbin
Sufficient dimension reduction for censored regressions.
- DOI:10.1111/j.1541-0420.2010.01490.x
- 发表时间:2011-06
- 期刊:
- 影响因子:1.9
- 作者:Lu W;Li L
- 通讯作者:Li L
EFFICIENT ESTIMATION FOR AN ACCELERATED FAILURE TIME MODEL WITH A CURE FRACTION.
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:1.4
- 作者:Wenbin Lu
- 通讯作者:Wenbin Lu
Sample size calculation for the proportional hazards cure model.
比例危害的样本量计算。
- DOI:10.1002/sim.5465
- 发表时间:2012-12-20
- 期刊:
- 影响因子:2
- 作者:Wang, Songfeng;Zhang, Jiajia;Lu, Wenbin
- 通讯作者:Lu, Wenbin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenbin Lu其他文献
Wenbin Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenbin Lu', 18)}}的其他基金
Flexible Statistical Methods for Complex Survival Data in Biomedical Studies
生物医学研究中复杂生存数据的灵活统计方法
- 批准号:
8034284 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
Flexible Statistical Methods for Complex Survival Data in Biomedical Studies
生物医学研究中复杂生存数据的灵活统计方法
- 批准号:
8230781 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
Flexible Statistical Methods for Complex Survival Data in Biomedical Studies
生物医学研究中复杂生存数据的灵活统计方法
- 批准号:
7885053 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 18.61万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 18.61万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 18.61万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 18.61万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 18.61万 - 项目类别: