Statistical Modeling of Medication and Placebo Effects
药物和安慰剂效应的统计模型
基本信息
- 批准号:8468969
- 负责人:
- 金额:$ 9.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-12 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAftercareAlcoholsBehavior TherapyClinical TrialsDataDependencyDevelopmentDropoutEmotionsEngineeringEuropeanEventExhibitsGermanyGoalsGrowthHealthHeterogeneityInterventionLightLinear ModelsMedication ManagementMethodologyModelingMotivationNaltrexoneNon-linear ModelsNonlinear DynamicsOutcomePersonsPharmaceutical PreparationsPlacebo EffectPlacebosProcessRandomizedResearchResearch PersonnelSamplingSiteSourceStatistical MethodsStatistical ModelsTechniquesTherapeutic InterventionTimeTreatment outcomeValidationacamprosateaddictionalcohol abuse therapybasecompliance behaviordesigndrinkingdrinking behaviorfollow-upimprovedmedication compliancepressureprimary outcomeresponsetool
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to develop a statistical tool to shed light on how the time course of treatment outcome is affected by medications, placebos, and other relevant factors. It addresses the RFA goal to "Develop and apply advanced longitudinal statistical techniques to describe how the placebo response changes over the course of alcohol clinical trials and explore sources of heterogeneity in these response trajectories." Standard statistical methods such as linear modeling are not well suited for studying the very dynamic processes that affect outcome during and after treatment. Based on theoretically-justified assumptions about the time course of both medication and placebo effects, we propose a dynamic nonlinear statistical model. This model uses medication compliance and other time varying information to predict drinking during and after treatment. This model was applied to a random half-sample of data from Project COMBINE, a large multi-site alcohol treatment study. A linear model based on the COMBINE primary outcome analyses accounted for 6 percent of the variance of drinking over time; the nonlinear model was able to account for 87 percent. The nonlinear model requires further development to improve its fit to the time course of outcome, and to incorporate covariates. It will then be validated on the other half-sample of the COMBINE data. Furthermore, it will be validated again using data from Project Predict, a study parallel to Project COMBINE that was conducted in Germany. Modeling the time course of outcome, while technically challenging, makes it possible to differentiate between medication, placebo, and other important effects on outcome. This in turn makes it possible to ascertain more clearly where medications succeed as well as where they falter. The information from the tool developed in this study will help us to engineer better intervention packages to improve the health of persons with addictive disorders.
描述(由申请人提供):该项目的目的是开发一种统计工具,以阐明治疗结果的时间过程如何受到药物,安慰剂和其他相关因素的影响。它解决了RFA的目标,即“开发和应用先进的纵向统计技术,以描述安慰剂反应在酒精临床试验过程中如何变化,并探索这些反应轨迹中的异质性来源。”诸如线性建模之类的标准统计方法不适合研究影响治疗期间和后结果的非常动态的过程。基于理论上对药物和安慰剂效应的时间过程的假设,我们提出了一个动态的非线性统计模型。该模型使用药物合规性和其他时间变化的信息来预测治疗期间和之后的饮酒。该模型被应用于Project Combine的随机半样本,这是一项大型多站点酒精治疗研究。基于组合主要结果分析的线性模型占饮酒方差的6%。非线性模型能够占87%。非线性模型需要进一步的发展,以提高其对结果的适合度,并结合协变量。然后将在组合数据的另一半样本上进行验证。此外,它将使用Project Predive的数据再次验证,这是一项与在德国进行的Project Combine的研究。在技术上具有挑战性的同时,对结果的时间过程进行建模使得有可能区分药物,安慰剂和对结果的其他重要影响。反过来,这使得可以更清楚地确定药物成功以及在哪里步履蹒跚的地方。这项研究中开发的工具的信息将帮助我们改善更好的干预软件包,以改善患有上瘾疾病的人的健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Loren Stout其他文献
Robert Loren Stout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Loren Stout', 18)}}的其他基金
Statistical Modeling of Medication and Placebo Effects
药物和安慰剂效应的统计模型
- 批准号:
8266870 - 财政年份:2012
- 资助金额:
$ 9.69万 - 项目类别:
A Longitudinal Prospective Study of Social Network Dynamics in Addictions
成瘾中社交网络动态的纵向前瞻性研究
- 批准号:
8272906 - 财政年份:2012
- 资助金额:
$ 9.69万 - 项目类别:
A Longitudinal Prospective Study of Social Network Dynamics in Addictions
成瘾中社交网络动态的纵向前瞻性研究
- 批准号:
8511508 - 财政年份:2012
- 资助金额:
$ 9.69万 - 项目类别:
A Longitudinal Prospective Study of Social Network Dynamics in Addictions
成瘾中社交网络动态的纵向前瞻性研究
- 批准号:
8655529 - 财政年份:2012
- 资助金额:
$ 9.69万 - 项目类别:
Longitudinal Study of Mechanisms of Drug Abuse Recovery-Pilot
药物滥用康复机制的纵向研究-试点
- 批准号:
7788975 - 财政年份:2010
- 资助金额:
$ 9.69万 - 项目类别:
Longitudinal Study of Mechanisms of Drug Abuse Recovery-Pilot
药物滥用康复机制的纵向研究-试点
- 批准号:
8018513 - 财政年份:2010
- 资助金额:
$ 9.69万 - 项目类别:
Organizational Factors in Drug Abuse Treatment Outcomes
药物滥用治疗结果的组织因素
- 批准号:
7455823 - 财政年份:2004
- 资助金额:
$ 9.69万 - 项目类别:
Organizational Factors in Drug Abuse Treatment Outcomes
药物滥用治疗结果的组织因素
- 批准号:
7069130 - 财政年份:2004
- 资助金额:
$ 9.69万 - 项目类别:
Organizational Factors in Drug Abuse Treatment Outcomes
药物滥用治疗结果的组织因素
- 批准号:
7272072 - 财政年份:2004
- 资助金额:
$ 9.69万 - 项目类别:
Organizational Factors in Drug Abuse Treatment Outcomes
药物滥用治疗结果的组织因素
- 批准号:
6733309 - 财政年份:2004
- 资助金额:
$ 9.69万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 9.69万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 9.69万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 9.69万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 9.69万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 9.69万 - 项目类别: