Functional and Structural Optical Brain Imaging
功能性和结构性光学脑成像
基本信息
- 批准号:8736920
- 负责人:
- 金额:$ 55.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAgreementAreaAtlasesAttentionAttention deficit hyperactivity disorderAuditoryBehaviorBilateralBiologicalBiophotonicsBlood VesselsBrainBrain InjuriesBrain imagingBrain regionBrodmann&aposs areaCerebrumChildChildhoodChronicClassificationClinicalCognitiveCollaborationsConflict (Psychology)CouplingDataDetectionDevelopmentDevicesDiagnosticDiffuseElectroencephalogramElectroencephalographyEmerging TechnologiesEnvironmentEpilepsyEvent-Related PotentialsFiberForeheadFunctional Magnetic Resonance ImagingFunctional disorderHandHeadHematomaHemispherectomyHemoglobinHumanImageImaging technologyJudgmentKnowledgeLateralLeftLegal patentLicensingLifeLightLinkLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMediationMethodologyMethodsModalityModelingMonitorMorphologic artifactsMotionMovementNational Institute of Mental HealthNational Institute of Neurological Disorders and StrokeNatureNear-Infrared SpectroscopyNoiseOpticsOxyhemoglobinParticipantPatientsPatternPhysiologicalPopulationPositioning AttributePositron-Emission TomographyPrefrontal CortexProcessRelative (related person)ResearchResolutionRestScientistSideSignal TransductionSoldierStructureSystemTBI PatientsTechniquesTechnologyTestingTherapeutic InterventionTimeTissuesTraumatic Brain InjuryTriageUniversitiesVariantVisualWorkabsorptionautism spectrum disorderbasebench to bedsidecerebrovascularchromophorecognitive functiondata acquisitiondeoxyhemoglobindetectorhemodynamicsimaging modalityinstrumentinterestmillisecondnovelnovel strategiesoptical imagingoptical sensoroutcome forecastpatient populationphotonicsprototyperelating to nervous systemresearch clinical testingresearch studyresponsesensortool
项目摘要
Imaging of the brain structure and function can help to elucidate different biological/clinical manifestations of Traumatic Brain Injury (TBI) and Autistic Spectrum Disorder (ASD) The idea is to localize brain areas for classification of structural and functional disorders and, ultimately, for therapeutic intervention. While functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are the best suited imaging modalities for the most of the functional brain studies, they have some inherent limitations, particularly in the case of low-functioning TBI or ASD subjects. Difficulties in fMRI data acquisition are mainly due to the non-friendly environment of the measurement system for the children with ASD and ADHD, because they are very sensitive to restrictions on movement. In this regard, patient-friendly NIRS can become an imaging modality of choice. NIRS and, in particular, functional near infrared spectroscopy (fNIRS) is an emerging technology for noninvasive measurements of the local changes in cerebral hemodynamic levels associated with brain activity. Due to the low optical absorption of biological tissues at NIR wavelengths (=700-1000 nm), NIR light can penetrate deep enough to probe the outer layers of brain (i.e., cortex) up to 2-3 cm deep. The NIR absorption spectrum of the tissue is sensitive to changes in the concentration of major tissue chromophores, such as hemoglobin species. Therefore, measurements of temporal variations of backscattered light can capture functionally evoked changes in the outermost cortex, and, thus, can be used to assess the brain functioning. Compared to other well-established brain imaging modalities, such as fMRI and PET, this technique offers unique features, including higher temporal resolution of several milliseconds, and spectroscopic information about temporal variations of both components of hemoglobin Oxy-HbO and deOxy-Hb, while fMRI can assess only deoxy-hemoglobin (Hb) changes. Most importantly for pediatric applications, NIRS instruments are much smaller, less restraining compared to fMRI or PET and can tolerate subject motion to a larger extent that fMRI. These features make the technique appropriate to study children with such problems as ASD as well as TBI patients, when keeping the subjects still for long periods of time is extremely challenging.
Due to neuro-vascular coupling local changes in oxyhemoglobin and deoxyhemoglobin levels can serve as an indirect measure of brain activity. At first approximation, these levels are proportional to the intensity of the brain activity. We have used an action complexity judgment task with a varying degree of cognitive load to produce brain activation. Twenty healthy participants were asked to evaluate the complexity of previously normed daily life action (number of steps to achieve the task) and classify the number of steps as few or many. We used the linear relationship between changes in the oxy/deoxyhemoglobin change and activity complexity to map the activation on the cortex. The mapping was possible with a special registration between MRI anatomical image and the optical sensor. The parametric effect of complexity showed activation in the frontopolar cortex. In our experiments we have found that on average the activation area corresponded to an angle of =95 and =10. Though the localization of the activation may be less precise with fNIRS than fMRI (according to fMRI data, this activation area was located at an angle =93 and =11), the parametric analysis, linking cognitive load to cerebrovascular reactivity may reveal physiological data of greater clinical importance than just the location of the activated area. Our preliminary results, obtained for 2 TBI patients, show that such parametric studies, based on fNIRS, have the potential to become a discriminator of cognitive function in TBI patients.
To probe changes in Oxy- and Deoxy-hemoglobin concentrations in the cortex that are caused by brain activity, related to chosen basic tasks, the data are collected at two wavelengths. To assess the brain activation in children of 4-8 years, we have used such tests as standard GO/NO-Go, developed to examine the effects of response inhibition and error processing. The NIRS signal is acquired, while children are performing the GO/NO-GO task. The NIRS sensor, placed on the childs forehead, covered Brodmann areas 9, 10 of the prefrontal cortex (PFC). Initial results of fNIRS assessment of the hemodynamic changes in the cortex indicate that mean activation levels (based on changes in oxy-hemoglobin) obtained from left and right prefrontal cortex during both GO and NO-GO trials are much higher in the case of typical child, compared to that of ASD. This fact indicates the hypo-activation of prefrontal cortex in the ASD group.
Studies of resting state and task-based functional connectivity aiming to identify brain regions similar in functional behavior have received increased attention over the past few years. Aside from healthy populations, different patient groups, including patients with ASD, TBI have been the subject of functional connectivity (FC) studies. These studies have identified different connectivity networks in patient groups compared to healthy population. Different imaging modalities have been employed to investigate the brains functional connectivity. We attempt to elucidate features of FC by studying both hemodynamic and neural responses of the brain using different modalities. We recorded hemodynamic activity during the Go/No-Go task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Using the data, we presented a reliable detection of fast optical signal (FOS) concurrently with electroencephalogram (EEG) during a Go/No-Go task. According to NIRS the hemodynamic responses showed higher task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) in the right versus left hemisphere. We have conducted two studies of FC to identify brain regions that are similar in functional behavior. Our more precise and comprehensive presentation of brain FC was achieved by investigating Electroencephalography (EEG) data. We employed a new approach to trace the dynamic patterns of human brain task-based functional connectivity.The EEG signals of 5 healthy subjects were recorded while they performed an auditory oddball and a visual modified oddball tasks. To capture the dynamic patterns of functional connectivity during the execution of each task, EEG signals are segmented into duration that correspond to the temporal windows of previously well-studied event-related potentials (ERPs). For each task, the proposed approach was able to establish a unique sequence of dynamic pattern (observed in all 5 subjects) for brain functional connectivity.
The early diagnostics of brain hematomas is known to be crucial for proper therapy and good prognosis. However, in many cases brain traumas occur in places, where imaging modalities, MRI and CT, are not easily accessible. For this reason, there is an urgent need for some portable tool to provide fast initial assessment of the brain injury. Some simplified NIR devices, based on comparison between region of interest (ROI) and contra-lateral side, may not detect the presence of symmetrical bilateral hematomas. Hematoma detector would be clinically viable, if it can provide proper diagnostics for all types of head hematoma. Motion artifacts present a major challenge for conventional NIR imaging, where random errors in the relative positions of the detectors and ROI contribute to measurement noise. We are in the process of patenting this methodology, and a company has already licensed it. We are in negotiation of a collaborative research agreement to bring the technology from bench to bedside.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir H Gandjbakhche其他文献
Amir H Gandjbakhche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir H Gandjbakhche', 18)}}的其他基金
Quantitative Biophotonics for Tissue Characterization and Function
用于组织表征和功能的定量生物光子学
- 批准号:
8941425 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Quantitative Biophotonics for Tissue Characterization and Function
用于组织表征和功能的定量生物光子学
- 批准号:
7734682 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Quantitative Biophotonics for Tissue Characterization and Function
用于组织表征和功能的定量生物光子学
- 批准号:
10007486 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Quantitative Biophotonics for Tissue Characterization and Function
用于组织表征和功能的定量生物光子学
- 批准号:
10266457 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Quantitative Biophotonics for Tissue Characterization and Function
用于组织表征和功能的定量生物光子学
- 批准号:
10913894 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Applications of Photon Migration to Tissue Tomography and Spectroscopy
光子迁移在组织断层扫描和光谱学中的应用
- 批准号:
6432508 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
Applications Of Photon Migration To Tissue Tomography
光子迁移在组织断层扫描中的应用
- 批准号:
6541102 - 财政年份:
- 资助金额:
$ 55.1万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 55.1万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 55.1万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 55.1万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 55.1万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 55.1万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 55.1万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 55.1万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 55.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 55.1万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 55.1万 - 项目类别:
Research Grants