Mitochondrial AntiViral Signaling Protein, IRF1, and Ischemic AKI
线粒体抗病毒信号蛋白、IRF1 和缺血性 AKI
基本信息
- 批准号:8629500
- 负责人:
- 金额:$ 15.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-23 至 2015-09-22
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcuteAcute Renal Failure with Renal Papillary NecrosisAntiviral AgentsAntiviral ResponseAreaBindingBoxingC-terminalCellsChronic Kidney FailureDataEndoplasmic ReticulumEpitheliumEventFamilyFigs - dietaryGene ActivationGenesHigh PrevalenceHost DefenseHumanHydrogen PeroxideIRF3 geneIn VitroInflammationInjuryInterferon Regulatory Factor 1Interferon Type IInterferon-alphaInterferonsIschemiaKidneyKnock-outLeadLettersLigationMembraneMinorMitochondriaMusNucleic AcidsPathway interactionsPost-Translational Protein ProcessingProductionProteinsReactive Oxygen SpeciesReperfusion TherapyResearchRoleSignaling ProteinSmall Interfering RNATestingTransgenic OrganismsTubular formationViralVirusVirus DiseasesWorkactivating transcription factoreffective therapygenetic regulatory proteinin vivoinnovationmitochondrial membranemortalitymutantnoveloverexpressionperoxisomepreventprotein activationpublic health relevancereceptorrenal epitheliumresponsetheoriestranscription factor
项目摘要
Abstract
We have discovered a novel "ischemic-AKI" MAVS-pathway that exacerbates ischemic acute kidney injury
(AKI). Reactive oxygen species (ROS) produced during ischemic AKI activate MAVS (Mitochondria Anti-Viral
Signaling protein), MAVS activates IRF1 (interferon regulatory factor 1), and IRF1 stimulates the production of
maladaptive ¿-IFNs (alpha interferons).
Ischemia/ reperfusion ¿ ROS ¿ MAVS activation ¿ activation of IRF1 gene ¿ ¿-IFN
production ¿ IFN¿¿ receptor ligation ¿ renal injury.
The above pathway is supported by our in vivo and in vitro data. Transgenic knockout of MAVS, IRF1, or
the IFN receptor confirm this sequence of events during ischemic AKI in vivo. siRNA knockdown of MAVS, or
IRF1 confirm the sequence in ROS-stimulated renal tubular epithelia in vitro.
MAVS, and ¿-IFNs are molecules that, previous to our work, were only known to participate in anti-viral
responses. Whereas the "anti-viral" MAVS-pathways are triggered by cytoplasmic viral nucleic acids, our
"ischemic-AKI" MAVS-pathway is triggered by ROS generated during ischemic AKI. We also propose novel
roles for mitochondria and peroxisomes in ischemic AKI (see Aim I).
We found that a critical intermediate step in the "ischemic-AKI" MAVS-pathway is activation of the IRF1
gene. IRF1 then activates ¿-IFNs. In contrast to its importance in ischemic AKI, IRF1 is not a critical
intermediate in the host defense against most viral infections. Therefore, we focus this proposal on
understanding the activation of IRF1. This understanding will lead to new therapies that would interdict the
maladaptive effects of the "ischemic-AKI" MAVS-pathway by inhibiting IRF1 gene activation, without a major
negative impact on anti-viral responses most of which are IRF1 independent.
Aim I: Does ischemic-AKI activate the IRF1 gene, and downstream ¿-IFNs, via the "peroxisomal" or
"mitochondrial" MAVS-pathways? The key regulatory protein in our novel "ischemic-AKI" MAVS-pathway is
MAVS. MAVS has a C-terminal transmembrane motif that embeds it into peroxisomal and mitochondrial
membranes. In response to viruses, the peroxisomal versus mitochondrial MAVS activate different genes.
The former is a minor component during most viral infections. The viral peroxisomal, but not the mitochondrial,
MAVS pathway shares the use of the transcription factor IRF1 with the "ischemic-AKI" MAVS-pathway. We
will determine if the "ischemic-AKI" MAVS-pathway uses peroxisomal MAVS. We will determine if specifically
activating or inhibiting the mitochondrial versus peroxisomal pathways inhibits IRF1 activation.
Aim II: Does a unique combination of transcription factors activate IRF1 in the "ischemic-AKI" MAVS-
pathway? We will test the hypothesis that the "ischemic-AKI" and "anti-viral" MAVS-pathway activate different
transcription factors. This would explain why the former activates IRF1, while the latter does not.
摘要
我们发现了一种新的“缺血性AKI”MAVS途径,可加重缺血性急性肾损伤
(阿基)。缺血性阿基期间产生的活性氧簇(ROS)激活MAVS(线粒体抗病毒)
信号蛋白),MAVS激活IRF 1(干扰素调节因子1),IRF 1刺激产生
适应不良的干扰素(α干扰素)。
缺血/再灌注<$ROS <$MAVS激活<$IRF1基因激活<$<$-IFN
产生<$IFN <$$>受体结扎<$肾损伤。
上述途径得到了我们的体内和体外数据的支持。转基因敲除MAVS、IRF 1或
IFN受体证实了体内缺血性阿基过程中事件顺序。MAVS的siRNA敲低,或
IRF 1在ROS刺激的体外肾小管上皮细胞中证实了该序列。
MAVS和干扰素是在我们的工作之前,只知道参与抗病毒的分子。
应答尽管“抗病毒”MAVS途径是由细胞质病毒核酸触发的,但我们的研究发现,
“缺血-AKI”MAVS-途径由缺血性阿基期间产生的ROS触发。我们还提出了新的
线粒体和过氧化物酶体在缺血性阿基中的作用(见目的I)。
我们发现,在“缺血-AKI”MAVS途径中的关键中间步骤是IRF 1的激活,
基因然后IRF 1激活<$-IFN。与其在缺血性阿基中的重要性相反,IRF 1不是一个关键的
在宿主防御大多数病毒感染中起中间作用。因此,我们把这项建议的重点放在
了解IRF 1的激活。这种理解将导致新的疗法,将阻断
通过抑制IRF 1基因激活,“缺血-AKI”MAVS-通路的适应不良效应,
对抗病毒应答的负面影响,其中大多数是IRF 1独立的。
目的I:缺血性AKI是否通过“过氧化物酶体”或“免疫抑制剂”激活IRF 1基因和下游的干扰素?
“线粒体”MAVS途径?在我们的新的“缺血-AKI”MAVS通路中的关键调节蛋白是
MAVS MAVS具有C末端跨膜基序,其嵌入过氧化物酶体和线粒体中,
膜。在应对病毒时,过氧化物酶体与线粒体MAVS激活不同的基因。
前者是大多数病毒感染过程中的次要成分。病毒过氧化物酶体,而不是线粒体,
MAVS途径与“缺血-AKI”MAVS途径共享转录因子IRF 1的使用。我们
将确定“缺血-AKI”MAVS途径是否使用过氧化物酶体MAVS。我们将确定是否具体
激活或抑制线粒体对过氧化物酶体途径抑制IRF 1激活。
目的II:在“缺血-AKI”MAVS中,转录因子的独特组合是否激活IRF 1?
pathway?我们将检验“缺血-AKI”和“抗病毒”MAVS-通路激活不同细胞的假设。
转录因子这可以解释为什么前者激活IRF 1,而后者不激活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER Y. LU其他文献
CHRISTOPHER Y. LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER Y. LU', 18)}}的其他基金
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 15.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 15.9万 - 项目类别:
Standard Grant