Gene Function Profiling of Neural Crest Cell Diversification

神经嵴细胞多样化的基因功能分析

基本信息

  • 批准号:
    8402288
  • 负责人:
  • 金额:
    $ 22.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-19 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Determining how combinations of genes interact as gene regulatory networks to produce cellular diversity is fundamental to understanding development. The neural crest (NC) has been studied extensively to elucidate mechanisms of cell diversification during development. The NC is a discrete and seemingly homogeneous undifferentiated stem cell-like ectodermal population of vertebrate embryonic precursor's cells that is the source of multiple different cell types including neurons and glia of the peripheral nervous system, pigment cells and major elements of the craniofacial skeleton, among others. Subsequent to the induction of the NC domain of the ectoderm during gastrulation, the fates of subsets of NC cells are specified as distinct sublineages that ultimately generate the complete cellular derivative repertoire of the progenitor population. How the fates of NC sublineages are specified during development is incompletely understood. Determining at the genetic level how differences between NC cells are established is essential to understanding how the NC generates such a vast array of different cell types. Studies in zebrafish and other vertebrates have indicated that several transcription factors are essential for the specification of distinct and overlapping subsets of NC sublineages, although none can individually account for NC cell diversification in its entirety. We found that in zebrafish foxd3; tfap2a double mutants all NC sublineages fail to be specified, indicating that foxd3 and tfap2a are synergistically and universally required for the initiation of NC diversification. Further, our studies indicate that the requirement for foxd3 and tfap2a for the initial specification of NC sublineages is due in part to their regulation of the NC expression of the SoxE family genes sox9a, sox9b and sox10. Together, these results have identified a framework gene regulatory network (GRN) that initiates NC diversification. Critically, however, the mechanisms by which framework GRN transcription factor interactions initiate NC diversification are not known. Equally important, the identified framework GRN cannot account for NC diversification in its entirety. Accordingly, we propose a research plan, based on the established framework GRN, to answer critical unresolved questions about the genetic regulation of the specification of NC sublineage fates which ultimately produces NC diversity. We will determine at the molecular level, employing a ChIP-based approach coupled with transgenic reporters, the mechanisms by which interactions between the frameworks GRN transcription factors specify NC cell fates. In addition, we will comprehensively identify additional foxd3- and tfap2adependent genes that, based on selection criteria, are candidates for the GRN controlling NC diversification using whole genome microarray expression profiling. We will then determine the functions of these candidates in regulating NC diversification using loss- and gain-of function approaches employing transgenic reporter wild type embryos and embryos singly or doubly mutant for genes comprising the framework GRN (foxd3, tfap2a, sox9a, sox9b and sox10) coupled with comprehensive phenotypic analysis of NC development. The results of our proposed studies will address critical deficiencies in the field by producing major fundamental advances in our understanding of the regulation of NC diversification. In addition, our results will generate applicable mechanistic paradigms for understanding cell diversification generally and provide a rich foundation for future comprehensive functional determination of the complete GRN controlling NC development. Lastly, given the high prevalence of clinically relevant conditions resulting from miscues during NC development, our results are likely to provide important insights for strategies to diagnose, treat and prevent human diseases such as neurocristopathies and cancers of NC origin. PUBLIC HEALTH RELEVANCE: The process by which unspecialized cells of early embryos go on to generate vast numbers of extremely different cell types specialized to subserve the diverse functional requirements of the developing organism is referred to as cell diversification. To understand how this important process is regulated at the level of genes and combinations of genes working together, it is useful to study less intricate model systems compared to whole organisms. The vertebrate neural crest has been studied extensively as a model to learn how cell diversification occurs because, during embryonic development, this population of seemingly homogeneous embryonic precursor cells ultimately generates an extensive array of different cell types contributing to multiple organ systems. While a great deal has been learned about the genetic regulation of neural crest diversification, much remains incompletely understood. Therefore, the purpose of our proposed research is to utilize the neural crest to experimentally determine at the molecular level how as yet poorly understood aspects of cell diversification are regulated during development. The results of our proposed research will provide both critical new mechanistic insights into the development of the neural crest and inform our understanding of how embryonic cell diversification is regulated generally. In addition, as cells and tissues derived from the neural crest are essential for the function and survival of vertebrate organisms and miscues during neural crest development are known to underlie large numbers of diseases and other clinically relevant conditions in humans, our research will provide insights into how these diseases develop and how they can be ameliorated. Further, not only is the neural crest the sources of prominent cancers, many genes that control the processes underlying neural crest diversification are implicated in cancer development and metastasis more generally. Therefore, taken together, our proposed research will also contribute to the development of strategies for the diagnosis, treatment and prevention of human diseases.
描述(由申请人提供):确定基因组合如何作为基因调控网络相互作用以产生细胞多样性是理解发育的基础。神经嵴(NC)已被广泛研究以阐明发育过程中细胞分化的机制。NC是脊椎动物胚胎前体细胞的一种离散且看似同质的未分化干细胞样外胚层细胞群,是多种不同细胞类型的来源,包括周围神经系统的神经元和胶质细胞、色素细胞和颅面骨骼的主要成分等。在原肠胚形成期间外胚层的NC结构域被诱导后,NC细胞亚群的命运被指定为不同的亚系,最终产生祖细胞群体的完整细胞衍生物库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL D HENION其他文献

PAUL D HENION的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL D HENION', 18)}}的其他基金

Development of Distinct Neural Crest and Hematopoietic Subpopulations
不同神经嵴和造血亚群的发育
  • 批准号:
    7619975
  • 财政年份:
    2006
  • 资助金额:
    $ 22.88万
  • 项目类别:
Development of Distinct Neural Crest and Hematopoietic Subpopulations
不同神经嵴和造血亚群的发育
  • 批准号:
    7146500
  • 财政年份:
    2006
  • 资助金额:
    $ 22.88万
  • 项目类别:
Development of Distinct Neural Crest and Hematopoietic Subpopulations
不同神经嵴和造血亚群的发育
  • 批准号:
    7276830
  • 财政年份:
    2006
  • 资助金额:
    $ 22.88万
  • 项目类别:
Development of Distinct Neural Crest and Hematopoietic Subpopulations
不同神经嵴和造血亚群的发育
  • 批准号:
    7250246
  • 财政年份:
    2006
  • 资助金额:
    $ 22.88万
  • 项目类别:
Development of Distinct Neural Crest and Hematopoietic Subpopulations
不同神经嵴和造血亚群的发育
  • 批准号:
    7425846
  • 财政年份:
    2006
  • 资助金额:
    $ 22.88万
  • 项目类别:
MUTAGENESIS SCREEN FOR MUTATIONS AFFECTING ZEBRAFISH
突变筛选影响斑马鱼的突变
  • 批准号:
    6729150
  • 财政年份:
    2001
  • 资助金额:
    $ 22.88万
  • 项目类别:
MUTAGENESIS SCREEN FOR MUTATIONS AFFECTING ZEBRAFISH
突变筛选影响斑马鱼的突变
  • 批准号:
    6315654
  • 财政年份:
    2001
  • 资助金额:
    $ 22.88万
  • 项目类别:
MUTAGENESIS SCREEN FOR MUTATIONS AFFECTING ZEBRAFISH
突变筛选影响斑马鱼的突变
  • 批准号:
    6536301
  • 财政年份:
    2001
  • 资助金额:
    $ 22.88万
  • 项目类别:
MUTAGENESIS SCREEN FOR MUTATIONS AFFECTING ZEBRAFISH
突变筛选影响斑马鱼的突变
  • 批准号:
    6638008
  • 财政年份:
    2001
  • 资助金额:
    $ 22.88万
  • 项目类别:
MUTAGENESIS SCREEN FOR MUTATIONS AFFECTING ZEBRAFISH
突变筛选影响斑马鱼的突变
  • 批准号:
    6885389
  • 财政年份:
    2001
  • 资助金额:
    $ 22.88万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了