Regulation of pluripotent differentiation by gene circuit interactions.
通过基因电路相互作用调节多能分化。
基本信息
- 批准号:8543744
- 负责人:
- 金额:$ 28.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-04 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAntibiotic ResistanceArchitectureBacillus subtilisBacteriaBacterial SporesBehaviorBindingBiologicalCell Differentiation processCell Fate ControlCell physiologyCellsChromosomesColorCompetenceComplexComputer SimulationDNADataEngineeringEventExhibitsFluorescenceFoodFutureGene ProteinsGenesGeneticGenetic ModelsHealthIndividualInterruptionLinkMapsMeasurementMeasuresMechanicsMemoryMethodsMicroscopicMicroscopyModelingMolecularMolecular TargetNoiseOrganismPhenotypePhysiologyProbabilityProcessPropertyProteinsPublic HealthRegulationRegulator GenesReproduction sporesResearchRoleStagingStem cellsStressSystemTechniquesTestingTimecell typecomparativeextracellulargenetic manipulationin vivooperationpreventprogramspromoterresearch studyresponse
项目摘要
DESCRIPTION (provided by applicant): Cellular processes are controlled by gene regulatory circuits that are comprised of interactions among genes and proteins. One such process common to organisms ranging from bacteria to mammalian stem cells is pluripotent differentiation, where cells can differentiate into one of several possible fates. We propose to investigate how interactions at the molecular level within and across genetic circuits determine pluripotent differentiation at the cellular level. We will study pluripotent differentiation in Bacillus subtilis, a simple, well characterized and experimentally accessible system as a model for genetic control of cell fate choice. Environmental stress induces B. subtilis cells to undergo sporulation or differentiate into the competence state and take up extracellular DNA and incorporate it into their chromosome. We have recently identified the core competence circuit and showed that it exhibits excitable dynamics triggered by noise. Many of the molecular components that regulate competence and sporulation in B. subtilis are known. How interactions within and across competence and sporulation circuits regulate the choice and execution of appropriate differentiation programs is, however, poorly understood. We will study this problem using quantitative fluorescence time- lapse microscopy at the single-cell level to establish how the dynamics of molecular interactions regulate this process. Exploiting genetic manipulation techniques available for B. subtilis, we will measure how systematic re-engineering of circuit interactions control differentiation. Utilizing established connectivity maps of competence and sporulation circuits, we will also construct mathematical frameworks to generate predictions and analyze results. Specifically, we will apply these methods to: (1) Determine the functional importance of competence circuit architecture by comparing it to engineered alternative topologies in silico and in vivo. (2) Determine the functional importance of cross-regulation in cell fate choice. (3) Determine how the transient activity of the competence circuit alters the progression and execution of sporulation. This integrative research is necessary to determine how molecular interactions within and across genetic circuits control pluripotent differentiation at the cellular level. Identification of the mechanics that dictate the choice and execution of cell fate in this model organism are likely to be relevant to pluripotent differentiation in diverse organisms including mammalian systems. PUBLIC HEALTH RELEVANCE: This proposal will establish a comprehensive description of how bacteria undergo differentiation. The resulting data will be relevant to: 1) Controlling differentiation in bacteria to prevent bacterial spore formation in foods. 2) Preventing the ability of bacteria to naturally become resistant to antibiotics. 3) Developing new techniques to control how cells differentiate, which can be applied in the future to control differentiation of mammalian stem cell to substitute for any missing or diseased cell types.
描述(由申请人提供):细胞过程由基因和蛋白质之间的相互作用组成的基因调控回路控制。从细菌到哺乳动物干细胞的生物体都有一个这样的过程,即多能分化,细胞可以分化成几种可能的命运之一。我们建议在分子水平上研究遗传回路内部和之间的相互作用如何在细胞水平上决定多能分化。我们将研究枯草芽孢杆菌(Bacillus subtilis)的多能分化,这是一种简单、特征明确、实验可及的系统,可作为细胞命运选择的遗传控制模型。环境胁迫诱导枯草芽孢杆菌细胞产生孢子或分化为胜任状态,并吸收细胞外DNA并将其整合到染色体中。我们最近确定了核心能力回路,并表明它表现出由噪声触发的可兴奋动态。许多调节枯草芽孢杆菌能力和产孢的分子成分是已知的。然而,能力和孢子回路内部和之间的相互作用如何调节适当分化程序的选择和执行,人们知之甚少。我们将在单细胞水平上使用定量荧光延时显微镜来研究这个问题,以确定分子相互作用的动力学如何调节这一过程。利用可用于枯草芽孢杆菌的遗传操作技术,我们将测量如何系统地重新设计电路相互作用来控制分化。利用已建立的能力和孢子循环的连通性图,我们还将构建数学框架来生成预测和分析结果。具体而言,我们将应用这些方法:(1)通过将其与硅和体内的工程替代拓扑进行比较,确定能力电路架构的功能重要性。(2)确定交叉调控在细胞命运选择中的功能重要性。(3)确定能力回路的瞬时活动如何改变产孢的进程和执行。这种综合研究对于确定遗传回路内部和之间的分子相互作用如何在细胞水平上控制多能分化是必要的。确定这种模式生物中决定细胞命运选择和执行的机制可能与包括哺乳动物系统在内的多种生物的多能分化有关。公共卫生相关性:该提案将建立细菌如何进行分化的全面描述。所得到的数据将与以下方面有关:1)控制细菌的分化以防止食物中细菌孢子的形成。2)防止细菌自然产生对抗生素的耐药性。3)开发控制细胞分化的新技术,未来可用于控制哺乳动物干细胞的分化,以替代任何缺失或病变的细胞类型。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making.
- DOI:10.1371/journal.pcbi.1002273
- 发表时间:2011-11
- 期刊:
- 影响因子:4.3
- 作者:Kuchina A;Espinar L;Garcia-Ojalvo J;Süel GM
- 通讯作者:Süel GM
Temporal competition between differentiation programs determines cell fate choice.
- DOI:10.1038/msb.2011.88
- 发表时间:2011-12-06
- 期刊:
- 影响因子:9.9
- 作者:
- 通讯作者:
Optimizing periodicity and polymodality in noise-induced genetic oscillators.
- DOI:10.1103/physreve.83.061904
- 发表时间:2011-04
- 期刊:
- 影响因子:0
- 作者:P. Rué;Gürol M. Süel;J. García-Ojalvo
- 通讯作者:P. Rué;Gürol M. Süel;J. García-Ojalvo
Ion channels enable electrical communication in bacterial communities.
- DOI:10.1038/nature15709
- 发表时间:2015-11-05
- 期刊:
- 影响因子:64.8
- 作者:Prindle A;Liu J;Asally M;Ly S;Garcia-Ojalvo J;Süel GM
- 通讯作者:Süel GM
Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication.
- DOI:10.1016/j.cell.2015.06.012
- 发表时间:2015-07-16
- 期刊:
- 影响因子:64.5
- 作者:Narula J;Kuchina A;Lee DD;Fujita M;Süel GM;Igoshin OA
- 通讯作者:Igoshin OA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gurol Mehmet Suel其他文献
Gurol Mehmet Suel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gurol Mehmet Suel', 18)}}的其他基金
Charge matters: Pursuing the most common, and least understood molecular interactions in cells
电荷很重要:追求细胞中最常见、最不为人理解的分子相互作用
- 批准号:
10308671 - 财政年份:2020
- 资助金额:
$ 28.27万 - 项目类别:
Charge matters: Pursuing the most common, and least understood molecular interactions in cells
电荷很重要:追求细胞中最常见、最不为人理解的分子相互作用
- 批准号:
10529306 - 财政年份:2020
- 资助金额:
$ 28.27万 - 项目类别:
Regulation of pluripotent differentiation by gene circuit interactions.
通过基因电路相互作用调节多能分化。
- 批准号:
7926938 - 财政年份:2009
- 资助金额:
$ 28.27万 - 项目类别:
Regulation of pluripotent differentiation by gene circuit interactions.
通过基因电路相互作用调节多能分化。
- 批准号:
8605802 - 财政年份:2009
- 资助金额:
$ 28.27万 - 项目类别:
Regulation of pluripotent differentiation by gene circuit interactions.
通过基因电路相互作用调节多能分化。
- 批准号:
8131125 - 财政年份:2009
- 资助金额:
$ 28.27万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 28.27万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 28.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists