Metnase, PIKK, and RPA Roles in DNA Damage and Replication Stress Responses
Metnase、PIKK 和 RPA 在 DNA 损伤和复制应激反应中的作用
基本信息
- 批准号:8584920
- 负责人:
- 金额:$ 28.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisAutophagocytosisBreastCancer EtiologyCancer PatientCell Cycle ArrestCell Cycle ProgressionCell DeathCell LineCell SurvivalCellsCessation of lifeChemotherapy-Oncologic ProcedureChimeric ProteinsChromosomesColonComplexDNA DamageDNA Double Strand BreakDNA IntegrationDNA RepairDNA Repair PathwayDNA Replication DamageDNA biosynthesisDNA lesionDNA-dependent protein kinaseDefectDevelopmentDouble Strand Break RepairFoundationsGenetic EpistasisGenomeGenome StabilityGenotoxic StressGrowthHead and neck structureHumanHypersensitivityInduction of ApoptosisKRP proteinLeadLungMediatingMethyltransferaseMitoticNecrosisNeoplasm MetastasisNonhomologous DNA End JoiningNormal CellPancreasPathway interactionsPhosphatidylinositolsPhosphorylationPlayProtein KinaseProtein MethyltransferasesProteinsRadiation therapyRadioRecoveryResistanceRiskRoleS PhaseSingle-Stranded DNASiteStressSystemTestingTherapeuticTimeTumor Cell LineTumor Suppressionbiological adaptation to stresscancer therapycell typechemotherapyclinically relevantcytotoxicitydesignhuman DNA damageimprovedinhibitor/antagonistkillingsneoplastic cellnovelnucleasepreventprogramspublic health relevancerepairedreplication factor Aresponsesenescencetumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Most cancer patients receive radio- and/or chemotherapy that causes DNA damage, which blocks DNA replication. Normal and tumor cells respond to DNA damage and associated replication stress by activating DNA repair, cell cycle arrest (checkpoint) systems, and when damage is severe, programmed death pathways, collectively termed the DNA damage response (DDR). DDR proteins play crucial roles in tumor suppression and genome stabilization (cancer etiology) as well as tumor response to radio- and chemotherapy (cancer treatment). DDR pathways determine cell fates in response to DNA damage, including cell survival, genome stability, and cell death/permanent growth arrest via apoptosis, autophagy, necrosis, senescence, or mitotic catastrophe. Cells are particularly vulnerable to DNA damage during S phase because most DNA lesions stall replication forks, causing replication stress. This proposal focuses on several proteins with roles in DNA repair, checkpoint activation, and recovery from replication stress. Metnase and DNA-PK were both initially characterized for their roles in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ). Recent studies demonstrate that Metnase and DNA-PK (along with replication protein A (RPA), ATM/ATR, Chk1, and others) also function in checkpoint activation and replication stress recovery. The replication checkpoint prevents new origin firing and stabilizes stalled replication forks to prevent fork collapse, allowing time for repair and for restart. Persistent replication stress can lead to fork collapse, producing one-ended DSBs marked by phosphorylated H2AX (?-H2AX). RPA accumulates on single-stranded DNA at stalled forks and the RPA32 subunit is phosphorylated at multiple sites by phosphoinositide 3-kinase-related protein kinases (PIKKs) DNA-PK, ATM and ATR, leading to Chk1 activation and replication arrest. Metnase also regulates Chk1 activation and replication arrest. Our central hypothesis is that Metnase, DNA-PK, and RPA operate within the DDR to influence cell fate after genotoxic stress, including cell survival, genome stability, and death pathway activation. We will determine roles of Metnase (Aim 1) and PIKK phosphorylation of RPA (Aim 2) in replication stress responses including replication arrest, fork restart, genome stability, cell survival and cell death by apoptosis. In Aim 3 we will define epistatic relationships between Metnase and PIKK/RPA pathways, and test novel combinations of replication stress agents plus DDR inhibitors to enhance killing of breast, lung, pancreatic, colon, head and neck, and leukemic tumor cells. A better understanding of how DDR factors regulate cell fate decisions will drive the development of novel cancer therapies to improve local tumor control, and reduce the risk of therapy-induced tumor progression and secondary tumor induction.
描述(由申请人提供):大多数癌症患者接受放射和/或化疗,会导致DNA损伤,从而阻止DNA复制。正常细胞和肿瘤细胞通过激活DNA修复、细胞周期阻滞(检查点)系统来应对DNA损伤和相关的复制压力,当损伤严重时,程序性死亡途径统称为DNA损伤反应(DDR)。DDR蛋白在肿瘤抑制和基因组稳定(癌症病因学)以及肿瘤对放疗和化疗的反应(癌症治疗)中起着至关重要的作用。DDR通路在DNA损伤的反应中决定细胞命运,包括细胞存活、基因组稳定性和细胞死亡/永久性生长停滞,包括细胞凋亡、自噬、坏死、衰老或有丝分裂灾难。细胞在S期特别容易受到DNA损伤,因为大多数DNA损伤会使复制分叉停滞,造成复制压力。本研究的重点是在DNA修复、检查点激活和复制应激恢复中发挥作用的几种蛋白质。Metnase和DNA- pk最初都是通过非同源末端连接(NHEJ)来修复DNA双链断裂(DSB)。最近的研究表明,Metnase和DNA-PK(以及复制蛋白A (RPA), ATM/ATR, Chk1等)也在检查点激活和复制应激恢复中发挥作用。复制检查点防止触发新的原点,并稳定已停止的复制分叉,以防止分叉崩溃,从而有时间进行修复和重新启动。持续的复制应激可导致分叉崩溃,产生以磷酸化H2AX (?-H2AX)为标志的单端dsb。RPA在停滞分叉的单链DNA上积累,RPA32亚基在多个位点被磷酸肌苷3激酶相关蛋白激酶(PIKKs) DNA- pk、ATM和ATR磷酸化,导致Chk1激活和复制停止。Metnase也调节Chk1的激活和复制停止。我们的中心假设是,甲基化酶、DNA-PK和RPA在DDR内运作,影响基因毒性应激后的细胞命运,包括细胞存活、基因组稳定性和死亡途径激活。我们将确定甲基化酶(Aim 1)和RPA的PIKK磷酸化(Aim 2)在复制应激反应中的作用,包括复制停止、叉重新启动、基因组稳定、细胞存活和细胞凋亡。在Aim 3中,我们将定义Metnase和PIKK/RPA途径之间的上位性关系,并测试复制应激剂加DDR抑制剂的新型组合,以增强对乳腺、肺、胰腺、结肠、头颈部和白血病肿瘤细胞的杀伤。更好地了解DDR因子如何调节细胞命运决定将推动新型癌症疗法的发展,以改善局部肿瘤控制,降低治疗诱导的肿瘤进展和继发性肿瘤诱导的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jac A Nickoloff其他文献
Regulation of DNA double-strand break repair pathway choice
DNA 双链断裂修复途径选择的调控
- DOI:
10.1038/cr.2007.111 - 发表时间:
2007-12-24 - 期刊:
- 影响因子:25.900
- 作者:
Meena Shrivastav;Leyma P De Haro;Jac A Nickoloff - 通讯作者:
Jac A Nickoloff
Jac A Nickoloff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jac A Nickoloff', 18)}}的其他基金
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
8007529 - 财政年份:2010
- 资助金额:
$ 28.22万 - 项目类别:
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
7760561 - 财政年份:2009
- 资助金额:
$ 28.22万 - 项目类别:
Metnase, PIKK, and RPA Roles in DNA Damage and Replication Stress Responses
Metnase、PIKK 和 RPA 在 DNA 损伤和复制应激反应中的作用
- 批准号:
9100800 - 财政年份:2009
- 资助金额:
$ 28.22万 - 项目类别:
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
8213573 - 财政年份:2009
- 资助金额:
$ 28.22万 - 项目类别:
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
8022920 - 财政年份:2009
- 资助金额:
$ 28.22万 - 项目类别:
MAMMALIAN DOUBLE-STRAND BREAK AND RECOMBINATIONAL REPAIR
哺乳动物双链断裂和重组修复
- 批准号:
7123263 - 财政年份:2005
- 资助金额:
$ 28.22万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
7024492 - 财政年份:2004
- 资助金额:
$ 28.22万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
6727092 - 财政年份:2004
- 资助金额:
$ 28.22万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
6874378 - 财政年份:2004
- 资助金额:
$ 28.22万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
7198028 - 财政年份:2004
- 资助金额:
$ 28.22万 - 项目类别:














{{item.name}}会员




