METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
基本信息
- 批准号:8213573
- 负责人:
- 金额:$ 28.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:BindingBiological AssayCancer EtiologyCell physiologyCellsCellular Stress ResponseChemotherapy-Oncologic ProcedureChromosomal translocationChromosomesDNADNA DamageDNA Double Strand BreakDNA IntegrationDNA ligase IVDNA-PKcsDefectDevelopmentDouble Strand Break RepairElementsFosteringGene TargetingGene Therapy AgentGenomeGenomic InstabilityHumanHuman GenomeIn VitroLigaseLysineMaintenanceMalignant NeoplasmsMethyl MethanesulfonateMethyltransferaseModificationMutagenesisNBS1 geneNeoplasm MetastasisNonhomologous DNA End JoiningPhosphorylationPhosphotransferasesPlasmidsProcessProliferatingProteinsRoleS PhaseSerineSiteSmall Interfering RNAStressSystemTestingTissuesTransposaseViralXRCC4 genebasecancer initiationcancer radiation therapycancer therapycell growthchemotherapyendodeoxyribonuclease SceIhomologous recombinationhuman diseasehuman tissuehydroxyureain vivoinhibitor/antagonistinsightleukemia/lymphomanucleasepublic health relevancetreatment strategytumor progressionviral DNA
项目摘要
DESCRIPTION (provided by applicant):
Metnase is a human protein with a SET (lysine methylase) domain and a Mariner transposase (nuclease) domain. Metnase is implicated in several aspects of DNA dynamics. Metnase promotes integration of DNA in a sequence-independent manner, but it is not known if integration sites are random. Metnase interacts with DNA ligase IV (LigIV) and NBS1, and appears to be an alternative to the well-known LigIV binding partner, XRCC4. LigIV and XRCC4 function in the final step of DNA double-strand break (DSB) repair by non-homologous end-joining (NHEJ). Metnase increases the efficiency and accuracy of NHEJ of plasmid substrates, and therefore appears to augment, or function redundantly with, classical NHEJ factors. Both SET and nuclease domains are required to promote NHEJ. Metnase has no apparent role in DSB repair by homologous recombination, but siRNA knockdown of Metnase suppresses random integration and enhances homology-directed integration (gene targeting). Metnase is not an active transposase as it does not efficiently mobilize endogenous Mariner elements. However, Metnase influences translocations perhaps reflecting its role in NHEJ. Defects in classical NHEJ proteins cause genome instability and predispose to cancer. Metnase is expressed in most human tissues, and Metnase levels are generally highest in proliferating tissues. siRNA knockdown of Metnase slows cell growth by elongating S phase, and sensitizes cells to replication stress induced by hydroxyurea and methylmethane sulfonate. Metnase is phosphorylated after DNA damage on serine 495 (S495), but the responsible kinase is unknown. Metnase interacts with TopoII1 and promotes TopoII1 chromosome decatenation activity. TopoII1 has been implicated in chromosomal translocations, including chemotherapy-induced translocations in secondary tumors. Our central hypothesis is that Metnase influences genome integrity through its roles in NHEJ, DNA integration, and chromosomal translocation. Much of what is currently known about Metnase is based on in vitro and plasmid-based in vivo assays. Here we propose two Specific Aims focused on in vivo chromosomal endpoints that will define the functional significance of the Metnase SET, nuclease, and phosphorylation domains in NHEJ and DNA integration. We will also determine the functional significance of the Metnase-LigIV interaction in NHEJ and integration, and whether Metnase influences chromosome translocations when TopoII1 is inhibited. These projects will provide mechanistic information about Metnase function during chromosomal DSB repair, integration and translocation. This information will provide new insights into (i) cellular stress responses and the maintenance of genome integrity, which relate to cancer etiology and treatment strategies; and (ii) the machinery responsible for DNA integration, which directly regulates genome modification by viral and non-viral DNA insertion, and may also be important for chromosomal translocations in human diseases including leukemias and lymphomas. Mechanistic insights into these processes will foster the development of more effective and safer cancer radio- and chemotherapy protocols, anti-viral agents, and gene therapy systems.
PUBLIC HEALTH RELEVANCE:
The human protein Metnase functions in DNA double-strand break repair, DNA integration into the human genome, and chromosomal translocations. The proposed studies will provide mechanistic information about cellular functions of Metnase. This information will provide new insights into cellular stress responses and the maintenance of genome integrity, both of which are important for cancer initiation and progression, and for cancer treatment. The proposed studies are also relevant to mechanisms of genome modification (mutagenesis) by viral and non-viral DNA insertion, and chromosomal translocations in human diseases including leukemias and lymphomas. Mechanistic insights into these processes will foster development of more effective and safer cancer radio- and chemotherapy protocols, anti-viral agents, and gene therapy systems.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jac A Nickoloff其他文献
Regulation of DNA double-strand break repair pathway choice
DNA 双链断裂修复途径选择的调控
- DOI:
10.1038/cr.2007.111 - 发表时间:
2007-12-24 - 期刊:
- 影响因子:25.900
- 作者:
Meena Shrivastav;Leyma P De Haro;Jac A Nickoloff - 通讯作者:
Jac A Nickoloff
Jac A Nickoloff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jac A Nickoloff', 18)}}的其他基金
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
8007529 - 财政年份:2010
- 资助金额:
$ 28.81万 - 项目类别:
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
7760561 - 财政年份:2009
- 资助金额:
$ 28.81万 - 项目类别:
Metnase, PIKK, and RPA Roles in DNA Damage and Replication Stress Responses
Metnase、PIKK 和 RPA 在 DNA 损伤和复制应激反应中的作用
- 批准号:
9100800 - 财政年份:2009
- 资助金额:
$ 28.81万 - 项目类别:
METNASE ROLES IN NHEJ, DNA INTEGRATION AND TRANSLOCATION
METNASE 在 NHEJ、DNA 整合和易位中的作用
- 批准号:
8022920 - 财政年份:2009
- 资助金额:
$ 28.81万 - 项目类别:
Metnase, PIKK, and RPA Roles in DNA Damage and Replication Stress Responses
Metnase、PIKK 和 RPA 在 DNA 损伤和复制应激反应中的作用
- 批准号:
8584920 - 财政年份:2009
- 资助金额:
$ 28.81万 - 项目类别:
MAMMALIAN DOUBLE-STRAND BREAK AND RECOMBINATIONAL REPAIR
哺乳动物双链断裂和重组修复
- 批准号:
7123263 - 财政年份:2005
- 资助金额:
$ 28.81万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
7024492 - 财政年份:2004
- 资助金额:
$ 28.81万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
6727092 - 财政年份:2004
- 资助金额:
$ 28.81万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
7198028 - 财政年份:2004
- 资助金额:
$ 28.81万 - 项目类别:
DSB REPAIR RECOMBINATION, AND GENOME STABILITY
DSB 修复重组和基因组稳定性
- 批准号:
6874378 - 财政年份:2004
- 资助金额:
$ 28.81万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 28.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 28.81万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 28.81万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




