Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
基本信息
- 批准号:8503273
- 负责人:
- 金额:$ 28.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsArabidopsisBehaviorBindingBiochemicalBiochemical GeneticsBlood VesselsCalendarCellsChromatin Remodeling FactorCircadian RhythmsDeveloping CountriesDevelopmentEnvironmentEukaryotaFaceFailureFlavinsFlowersFoundationsGene ExpressionGene FamilyGenesGeneticGenetic TranscriptionGenomicsGoalsHealthHumanLearningLibrariesLightMammalsMeasurementMeasuresMental DepressionMolecularMolecular ProfilingMonitorNamesOrganismPatternPerceptionPhasePhotoperiodPhotoreceptorsPhysiologicalPlant LeavesPlant ModelPlantsPlayPost-Translational RegulationProteinsRecruitment ActivityRecurrenceRegulationRepressionReproductionResearchRoleRunningSeasonal Affective DisorderSeasonal VariationsSeasonsStudy modelsSystemSystems BiologyTestingTimeTranscription CoactivatorTranscription Repressor/CorepressorTranscriptional Regulationbasechromatin modificationcircadian pacemakerday lengthfunctional genomicsgenetic analysishistone modificationmRNA Expressionmemberprogramspublic health relevancereproductive successresearch studyresponsescreeningtooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): Organisms that fail to respond appropriately to seasonal change will face severe consequences related to survival and reproduction. For humans, seasonal variation in the amount of light causes Seasonal Affective Disorder (SAD), a recurrent subtype of depression. Although the molecular mechanisms underlying SAD remain elusive, it is known that photoperiodic mechanisms play a significant role in many cases of SAD. Many organisms, including humans, have evolved mechanisms to sense changes in day length (=photoperiod) and integrate seasonal change information into their development. The long-term goal of our research program is to elucidate the molecular mechanisms by which organisms measure changes in day length and adjust their behaviors and development accordingly. Although the molecular mechanisms of photoperiodism have not yet been well described in many organisms, recent advances in the study of the model plant Arabidopsis have increased our molecular understanding of photoperiodic time measurement and have influenced the study of other plant and animal species. In Arabidopsis, the core time-measurement mechanism is circadian-regulated transcription of the floral activator CONSTANS (CO) gene and light-regulated CO protein stability and activity. In this proposal, further characterization o this core mechanism will be done through biochemical, genetic, and genomic approaches. In Aim 1, newly identified transcriptional regulators of CO will be characterized. The findings will elucidate further how the circadian clock plays a role in regulating seasonal response by orchestrating different classes of transcription factors. In Aim 2, time-dependent chromatin modification of CO transcriptional regulation - a new mechanistic layer of understanding - will be studied. Our previous results indicated the involvement of the FKF1 blue-light photoreceptor in posttranslational regulation of CO protein. In Aim 3, the molecular function of FKF1-associating proteins on CO protein stability regulation will be examined. With these three Aims, the mechanisms by which plants monitor daily and seasonal differences through the circadian clock will be analyzed. The findings will impact plant research and our broader understanding of photoperiodism and circadian clocks in mammals and other systems. The types of transcriptional and posttranslational mechanisms present in Arabidopsis are likely conserved among all eukaryotes, thus these findings will contribute to our understanding of fundamental transcriptional regulation. These findings also have the potential to provide clues to the mechanisms involved in SAD. Finally, elucidating the photoperiodic flowering mechanism is important for understanding a major plant reproduction mechanism that is directly applicable to improvements in crop yield, an important contributor to human health especially in developing countries.
描述(由申请人提供):未能对季节变化做出适当反应的生物将面临与生存和繁殖相关的严重后果。对于人类来说,光照量的季节性变化会导致季节性情感障碍(SAD),这是抑郁症的一种复发亚型。虽然SAD的分子机制仍然难以捉摸,但已知光周期机制在许多SAD病例中起重要作用。许多生物,包括人类,已经进化出感知日长(=光周期)变化的机制,并将季节变化信息整合到它们的发育中。我们研究计划的长期目标是阐明生物体测量日长变化并相应调整其行为和发育的分子机制。虽然光周期的分子机制尚未在许多生物体中得到很好的描述,但最近在模式植物拟南芥的研究中取得的进展增加了我们对光周期时间测量的分子理解,并影响了其他植物和动物物种的研究。在拟南芥中,核心的时间测量机制是昼夜调节的花激活因子CONSTANS(CO)基因的转录和光调节CO蛋白的稳定性和活性。在这项提议中,将通过生物化学、遗传学和基因组学方法进一步表征这一核心机制。在目标1,新发现的转录调控CO的特点。这些发现将进一步阐明生物钟如何通过协调不同类别的转录因子在调节季节反应中发挥作用。在目标2中,时间依赖性染色质修饰的CO转录调控-一个新的机制层的理解-将进行研究。我们先前的研究结果表明FKF 1蓝光受体参与了CO蛋白的翻译后调节。在目标3中,将检查FKF 1相关蛋白对CO蛋白稳定性调节的分子功能。在这三个目标下,将分析植物通过生物钟监测每日和季节差异的机制。这些发现将影响植物研究以及我们对哺乳动物和其他系统中光周期和生物钟的更广泛理解。拟南芥中存在的转录和翻译后机制的类型可能是所有真核生物中保守的,因此这些发现将有助于我们理解基本的转录调控。这些发现也有可能为SAD的机制提供线索。最后,阐明光周期开花机制对于理解直接适用于提高作物产量的主要植物繁殖机制是重要的,作物产量是人类健康的重要贡献者,特别是在发展中国家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKATO IMAIZUMI其他文献
TAKATO IMAIZUMI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKATO IMAIZUMI', 18)}}的其他基金
Molecular Mechanisms of Seasonal Time Measurement
季节时间测量的分子机制
- 批准号:
10457296 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7791317 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7268264 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7596474 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7547634 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
7714787 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
8044686 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanisms of Seasonal Time Measurement
季节时间测量的分子机制
- 批准号:
10226082 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
Molecular Mechanism of Photoperiodic Time Measurement
光周期时间测量的分子机制
- 批准号:
9043103 - 财政年份:2007
- 资助金额:
$ 28.6万 - 项目类别:
相似海外基金
Single cell level elucidation of local cell death-triggered regeneration mechanism in Arabidopsis
单细胞水平阐明拟南芥局部细胞死亡触发的再生机制
- 批准号:
24K17869 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering the molecular mechanism of GESENI (GEne Silencing based on ENcoded protein's Intracellular localization) in Arabidopsis sperm cells
破译拟南芥精子细胞中GESENI(基于编码蛋白细胞内定位的基因沉默)的分子机制
- 批准号:
24K18143 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of cell fate specification mechanisms during early embryogenesis in Arabidopsis
拟南芥早期胚胎发生过程中细胞命运规范机制的鉴定
- 批准号:
22KF0023 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The role of ELMOD family proteins and their genetic network in the development of specialized membrane domains on the Arabidopsis pollen surface
ELMOD家族蛋白及其遗传网络在拟南芥花粉表面特殊膜结构域发育中的作用
- 批准号:
2240972 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Standard Grant
Effects of perturbing polyamine metabolism on development and stress responses in Arabidopsis thaliana
扰动多胺代谢对拟南芥发育和应激反应的影响
- 批准号:
2887668 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Studentship
Identification and analysis of genetic variants that enhance the expression of gravitropism in Arabidopsis roots
增强拟南芥根向地性表达的遗传变异的鉴定和分析
- 批准号:
23K05483 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of plant cell magnesium concentration control mechanism by the Arabidopsis thaliana transport protein AtMRS2-1
拟南芥转运蛋白AtMRS2-1阐明植物细胞镁浓度控制机制
- 批准号:
23KJ0503 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Genome assessment of temperature adaptability in Arabidopsis halleri ecotypes that adapted to different altitudes
适应不同海拔的拟南芥生态型温度适应性的基因组评估
- 批准号:
23H02549 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rotation 1: Circadian clocks in wheat and Arabidopsis
旋转 1:小麦和拟南芥的生物钟
- 批准号:
2886558 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Studentship
Development of yeast protein expression library expressing all Arabidopsis membrane transporters
表达所有拟南芥膜转运蛋白的酵母蛋白表达文库的开发
- 批准号:
23K05696 - 财政年份:2023
- 资助金额:
$ 28.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)