Developing Optimal Dynamic Behavioral Intervention in Community-Based Studies.

在基于社区的研究中制定最佳动态行为干预。

基本信息

  • 批准号:
    8462308
  • 负责人:
  • 金额:
    $ 27.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Stroke prevention may be achieved through lifestyle changes on a variety of issues such as physical activities and medication adherence. It is therefore difficult to overstate the importance of developing and disseminating behavioral intervention programs as a public health measure to prevent strokes. For the same reason, a behavioral intervention program naturally involves multiple components addressing the various issues; and a successful multi-component program is likely a direct result of administering each interventional component in an optimal sequence, based on the intermediate health outcomes, so as to maximize the eventual health outcome such as blood pressure reduction over 12 months. This type of treatment program tailors the intervention sequence according to an individual's own characteristics, and is sometimes called dynamic treatment regime (DTR). This research aims to develop, validate, and disseminate statistical methods to identify optimal DTR through carefully designed randomized community-based studies. We plan to achieve this research goal in four steps. First, we will develop a data analytical technique, called Q-learning, that will enable us to identify an optimal DTR in an unbiased fashion using data from community- based studies. Q-learning is a cutting-edge technique originating from the computer science literature; this research will adapt this innovative idea to clinical applications where data are observed with high level of variability (noise). Second, we will develop statistical designs that facilitate the discovery of optimal DTR through Q-learning while benefiting the trial participants. This will involve novel synthesis of two clinical trial design concepts: sequential multiple assignment randomized trial (SMART) and adaptive randomization (AR). Third, we will validate the proposed theory and methods by using computer simulation and analyzing data from an actual behavioral intervention study. Fourth, we will disseminate the methods by building software with public access and employ the methods in the planning of the next stage of intervention study; this step is intended to close the lag time between novel methods and its clinical applications. Our long-term public health goal is to enhance the capability of developing optimal behavioral intervention curriculums.
描述(由申请人提供):中风预防可以通过改变生活方式来实现,如身体活动和药物依从性。因此,很难夸大发展和传播行为干预计划作为预防中风的公共卫生措施的重要性。出于同样的原因,行为干预计划自然涉及解决各种问题的多个组件;成功的多组件计划可能是基于中间健康结果以最佳顺序管理每个干预组件的直接结果,以便最大限度地提高最终的健康结果,例如在12个月内降低血压。这种类型的治疗方案根据个人自身的特点调整干预顺序,有时称为动态治疗方案(DTR)。本研究旨在开发,验证和传播统计方法,以确定最佳的DTR通过精心设计的随机社区为基础的研究。我们计划分四步实现这一研究目标。首先,我们将开发一种数据分析技术,称为Q学习,这将使我们能够使用基于社区的研究数据以公正的方式确定最佳DTR。Q-learning是一种源自计算机科学文献的尖端技术;这项研究将使这一创新理念适用于临床应用,其中观察到的数据具有高度的可变性(噪声)。其次,我们将开发统计设计,通过Q学习促进发现最佳DTR,同时使试验参与者受益。这将涉及两种临床试验设计概念的新合成:序贯多分配随机试验(SMART)和自适应随机化(AR)。第三,我们将通过计算机模拟和分析实际行为干预研究的数据来验证所提出的理论和方法。第四,我们将通过建立公共访问软件来传播这些方法,并将这些方法用于下一阶段干预研究的规划;这一步骤旨在缩短新方法与其临床应用之间的滞后时间。我们的长期公共卫生目标是提高发展最佳行为干预机构的能力。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential multiple assignment randomized trial (SMART) with adaptive randomization for quality improvement in depression treatment program.
顺序多重分配随机试验(SMART)具有自适应随机化,以改善抑郁症治疗计划的质量。
  • DOI:
    10.1111/biom.12258
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Cheung YK;Chakraborty B;Davidson KW
  • 通讯作者:
    Davidson KW
Q-learning for estimating optimal dynamic treatment rules from observational data.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ken Cheung其他文献

Ken Cheung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ken Cheung', 18)}}的其他基金

Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
  • 批准号:
    10667379
  • 财政年份:
    2021
  • 资助金额:
    $ 27.19万
  • 项目类别:
Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
  • 批准号:
    10401933
  • 财政年份:
    2021
  • 资助金额:
    $ 27.19万
  • 项目类别:
Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
  • 批准号:
    10211145
  • 财政年份:
    2021
  • 资助金额:
    $ 27.19万
  • 项目类别:
Novel Methods for Evaluation and Implementation of Behavioral Intervention Technologies for Depression
抑郁症行为干预技术评估和实施的新方法
  • 批准号:
    9083697
  • 财政年份:
    2016
  • 资助金额:
    $ 27.19万
  • 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
  • 批准号:
    8532031
  • 财政年份:
    2012
  • 资助金额:
    $ 27.19万
  • 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
  • 批准号:
    8657101
  • 财政年份:
    2012
  • 资助金额:
    $ 27.19万
  • 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
  • 批准号:
    8369662
  • 财政年份:
    2012
  • 资助金额:
    $ 27.19万
  • 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
  • 批准号:
    8839813
  • 财政年份:
    2012
  • 资助金额:
    $ 27.19万
  • 项目类别:
Developing Optimal Dynamic Behavioral Intervention in Community-Based Studies.
在基于社区的研究中制定最佳动态行为干预。
  • 批准号:
    8269641
  • 财政年份:
    2011
  • 资助金额:
    $ 27.19万
  • 项目类别:
Dose and Treatment Selection in Clinical Trials
临床试验中的剂量和治疗选择
  • 批准号:
    7895918
  • 财政年份:
    2006
  • 资助金额:
    $ 27.19万
  • 项目类别:

相似海外基金

Optimizing Health and Well-Being of Diverse Mothers with IDD and Their Infants During the Perinatal Period: A Virtual Advocate Tool for Data-Driven Supports
优化患有 IDD 的不同母亲及其婴儿在围产期的健康和福祉:用于数据驱动支持的虚拟倡导工具
  • 批准号:
    10760051
  • 财政年份:
    2023
  • 资助金额:
    $ 27.19万
  • 项目类别:
POSE: Phase II: Advocate Led Long-term Gameplan for Open OnDemand (ALL GOOD)
POSE:第二阶段:倡导者主导 Open OnDemand 的长期游戏计划(一切顺利)
  • 批准号:
    2303692
  • 财政年份:
    2023
  • 资助金额:
    $ 27.19万
  • 项目类别:
    Standard Grant
Capitalising on our differences: A gathering to better understand and advocate for Early Career Health Researchers in Canada
利用我们的差异:更好地理解和倡导加拿大早期职业健康研究人员的聚会
  • 批准号:
    468168
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
    Miscellaneous Programs
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
  • 批准号:
    10427960
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
Evaluating an ACEs-Targeting Advocate Model of a Substance Use Prevention Program
评估药物使用预防计划的针对 ACE 的倡导者模型
  • 批准号:
    10577074
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
The Art of Creation: Using Art-Based Knowledge Translation to Promote and Advocate for a Healthy Start to Life
创造的艺术:利用基于艺术的知识转化来促进和倡导健康的生命开端
  • 批准号:
    486588
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
    Studentship Programs
When I am Old, I shall Wear Purple Nail Varnish: Utilising performance art to construct queer spaces that celebrate and advocate for ageing bodies
当我老了,我要涂紫色指甲油:利用行为艺术构建酷儿空间,庆祝和倡导衰老的身体
  • 批准号:
    2760091
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
    Studentship
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
  • 批准号:
    10621188
  • 财政年份:
    2022
  • 资助金额:
    $ 27.19万
  • 项目类别:
Techquity by FAITH!: A cluster randomized controlled trial to assess the efficacy of a community-informed, cardiovascular health promotion mobile hlth intervention with digital health advocate support
Techquity by FAITH!:一项整群随机对照试验,旨在评估社区知情、心血管健康促进移动 hlth 干预措施在数字健康倡导者支持下的效果
  • 批准号:
    10891016
  • 财政年份:
    2021
  • 资助金额:
    $ 27.19万
  • 项目类别:
CMV responses in autoantibody positive subjects advocate antiviral treatments for prevention of T1D
自身抗体阳性受试者的 CMV 反应主张抗病毒治疗以预防 T1D
  • 批准号:
    10230365
  • 财政年份:
    2020
  • 资助金额:
    $ 27.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了