Novel Methods for Evaluation and Implementation of Behavioral Intervention Technologies for Depression
抑郁症行为干预技术评估和实施的新方法
基本信息
- 批准号:9083697
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-20 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdherenceAdoptedAdoptionAdultAdvocateAlgorithmsAnxietyBehavior TherapyCar PhoneCaringCellular PhoneClinical TrialsCognitiveCommunitiesComplexComputational algorithmComputer SimulationComputer SystemsComputer softwareComputersDataData AnalysesDevelopmentEffectivenessElementsEmerging TechnologiesEngineeringEvaluationEvidence based interventionEvidence based practiceGoalsHealthHealth Care ResearchHealth PersonnelHealth Services ResearchHealthcare SystemsHigh PrevalenceInferiorInstitute of Medicine (U.S.)IntelligenceInterventionLearningLeftLiteratureMajor Depressive DisorderMarketingMental DepressionMental HealthMental Health ServicesMethodsModelingMorbidity - disease rateNational Institute of Mental HealthOutcomePatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacotherapyPhasePopulationPrimary Health CareProceduresProcessProductivityProviderPsychological reinforcementPsychotherapyPublic HealthPublicationsPublishingQuality of CareQuality of lifeRandomizedRandomized Clinical TrialsResearchResearch PriorityScienceSourceStatistical MethodsStrategic PlanningSystemTabletsTechniquesTechnologyTestingTimeLineTranslationsUnited StatesWorkagedanalytical toolbasebehavior changeburden of illnesscare deliverycaregivingcomputer sciencecostdepressed patientdesigndissemination researcheffective therapyevidence basefunctional statusimplementation researchimprovedinnovationknowledge basemeetingsmodels and simulationmortalitynovelpreferencepsychologicpublic health relevancerandomized trialsensorsingle episode major depressive disorderstatisticstechnology development
项目摘要
DESCRIPTION (provided by applicant): Major depressive disorder (MDD) is projected to be a leading cause of burden of disease globally and in the United States. In the United States, in 2012 alone, an estimated 16 million adults aged 18 or older (7% of all adults) had at least one major depressive episode. While psychological treatments are effective at treating depression, the high prevalence of MDD makes it impossible to meet the needs in the population with standard one-to-one intensive psychological treatments. Behavioral intervention technologies (BITs) use technologies such as mobile phones to support behavior change to improve mental health, and have been shown to have similar effects to psychotherapy and pharmacotherapy. With the growing number of mobile phone users, BIT is a viable and promising option for delivering psychotherapy. On the other hand, the current evaluation framework of new interventions is not adequate for evaluating and implementing BITs, because of the rapidly evolving BIT landscape and the complexity of the interventions. This research aims to develop and validate novel concepts and evaluation framework to address these two challenges in the dissemination and implementation of BITs in MDD patients in pragmatic settings. We plan to achieve this research goal in four steps. First, we will develop a new statistical design, called open-ended adaptive randomization (OAR) procedure, which will enable us to continuously evaluate BITs that enter and leave a care delivery system. The OAR also aims to improve quality of care given to the participating patients, by sequentially allocating patients away from inferior BITs based on the interim evidence during deployment. Second, we will develop a data analytical technique, called regularized Q-learning, which will enable us to perform variable selection in high-dimensional settings and retain only the important predictors of health outcomes in the learning model. While the original Q-learning is a cutting-edge technique originating from the computer science literature, the research will extend its capability to handle
high-dimensional data and enrich the learning model by incorporating regularized regression. Third, we will prepare for the next implementation phase of the proposed methods, by calibrating the methods with computer simulations, creating an initial knowledge base by analyzing data from current randomized clinical trials, identifying partnerships with healthcare providers and app curation plaftorms. Fourth, we will advocate for the general implementation of the proposed methods by producing publications, building cognitive computing systems, and tracking the source of citation and adoption of the published results by the broader health research community. Our long-term goal is to enhance our capability of deploying complex interventions such as BITs to depressed patients in a personalized and evidence-based manner throughout the healthcare system.
描述(由申请人提供):重度抑郁症(MDD)预计将成为全球和美国疾病负担的主要原因。在美国,仅在2012年,估计有1600万18岁或以上的成年人(占所有成年人的7%)至少有一次重度抑郁发作。虽然心理治疗在治疗抑郁症方面是有效的,但MDD的高患病率使得标准的一对一强化心理治疗无法满足人群的需求。行为干预技术(BIT)使用移动的电话等技术来支持行为改变,以改善心理健康,并已被证明具有与心理治疗和药物治疗相似的效果。随着越来越多的移动的电话用户,BIT是一个可行的和有前途的选择,提供心理治疗。另一方面,由于双边投资条约的迅速发展和干预措施的复杂性,目前对新干预措施的评估框架不足以评估和执行双边投资条约。本研究旨在开发和验证新的概念和评估框架,以解决这两个挑战,在传播和实施双边投资条约的MDD患者在务实的设置。我们计划分四步实现这一研究目标。首先,我们将开发一种新的统计设计,称为开放式自适应随机化(OAR)程序,这将使我们能够持续评估进入和离开医疗服务系统的BIT。OAR还旨在通过根据部署期间的临时证据顺序分配患者远离劣质BIT,从而提高为参与患者提供的护理质量。其次,我们将开发一种数据分析技术,称为正则化Q学习,这将使我们能够在高维环境中进行变量选择,并在学习模型中只保留健康结果的重要预测因素。虽然最初的Q学习是一种源自计算机科学文献的尖端技术,但这项研究将扩展其处理
高维数据,并通过合并正则化回归来丰富学习模型。第三,我们将为拟议方法的下一个实施阶段做准备,通过计算机模拟校准方法,通过分析当前随机临床试验的数据创建初始知识库,确定与医疗保健提供者和应用程序管理平台的合作伙伴关系。第四,我们将通过出版出版物、构建认知计算系统、跟踪引用来源以及更广泛的健康研究社区对已发表结果的采用,来倡导所提出方法的普遍实施。我们的长期目标是提高我们在整个医疗保健系统中以个性化和循证方式向抑郁症患者部署复杂干预措施(如BIT)的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ken Cheung其他文献
Ken Cheung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ken Cheung', 18)}}的其他基金
Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
- 批准号:
10667379 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
- 批准号:
10401933 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Breaking up Prolonged Sedentary Behavior to Improve Cardiometabolic Health: An Adaptive Dose-Finding Study
打破长时间久坐行为以改善心脏代谢健康:一项适应性剂量探索研究
- 批准号:
10211145 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
- 批准号:
8532031 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
- 批准号:
8369662 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
- 批准号:
8657101 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Physical Activity Patterns via New Dimension-Informative Cluster Models.
通过新维度信息集群模型的身体活动模式。
- 批准号:
8839813 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Developing Optimal Dynamic Behavioral Intervention in Community-Based Studies.
在基于社区的研究中制定最佳动态行为干预。
- 批准号:
8462308 - 财政年份:2011
- 资助金额:
$ 41.2万 - 项目类别:
Developing Optimal Dynamic Behavioral Intervention in Community-Based Studies.
在基于社区的研究中制定最佳动态行为干预。
- 批准号:
8269641 - 财政年份:2011
- 资助金额:
$ 41.2万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 41.2万 - 项目类别: