Dissecting essential signaling pathways in apicomplexan parasites
剖析顶端复门寄生虫的重要信号通路
基本信息
- 批准号:8609230
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-19 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAllelesAnimalsBehaviorBindingBiologicalBiologyCalciumCategoriesCell physiologyCellsCessation of lifeCryptosporidiumCysteineDental cariesDiseaseEngineeringEnzymesFamilyGeneticGenomeGoalsHumanImmunoprecipitationIndividualInfectionInterventionLabelLifeLife Cycle StagesMalariaMammalsMapsMass Spectrum AnalysisMeasuresMethodsModelingModificationMolecularNational Institute of Allergy and Infectious DiseaseOrganellesOrganismParasitesPathway interactionsPhosphorylationPhosphorylation SitePhosphotransferasesPlasmodium malariaePopulationPositioning AttributeProcessProteinsRadiolabeledReactionResearch PersonnelResistanceRoleSignal PathwaySignal TransductionSiteTherapeuticToxoplasma gondiiWorkYeastsanalogbasebiodefensecalcium-dependent protein kinasecell motilitychemical geneticsgenetic manipulationimprovedin vivoinhibitor/antagonistmembernovelnovel strategiespathogenpreventprotein functionpublic health relevanceradiotracerresearch studytherapeutic target
项目摘要
7. PROJECT SUMMARY/ ABSTRACT
Apicomplexan parasites are important human pathogens, and cause diseases ranging from life-long
asymptomatic infections with Toxoplasma gondii in about a quarter of the world's population to nearly a million
deaths annually due to malaria. To decipher their biology and treat the diseases they cause, we must
understand the signaling pathways unique to these successful pathogens. Calcium-dependent protein kinases
(CDPKs) are attractive targets for intervention because they are conserved among apicomplexans, absent
from the genomes of their animal hosts, and essential for the parasite life cycle. Prior work has shown that
CDPKs regulate various processes necessary during the T. gondii life cycle, including the calcium-regulated
secretion of specialized organelles required for motility. Although we have identified key enzymes responsible
for phosphorylation in T. gondii, we know little about the substrates, and even less about the consequences of
these modifications for parasite entry, survival and release from the infected host cell.
The proposed study will map essential signaling pathways regulated by apicomplexan CDPKs and inform their
potential as therapeutic targets. The three specific aims of this proposal will address different aspects of CDPK
biology, by identifying the role of individual kinases, characterizing the substrates they regulate, and
determining the function of these substrates. The first aim uses a chemical-genetic strategy established by the
applicant to specifically inhibit and study the function of two CDPKs in the parasite life cycle, and extends this
strategy to the four remaining members of the kinase family. These experiments will allow us to compare the
cellular processes regulated by each of the conserved CDPKs in T. gondii. The second aim exploits our ability
to label and identify the targets of specific parasite kinases, to map the substrates of two CDPKs previously
shown to be essential for parasite entry and exit from host cells. The final aim will use quantitative mass
spectrometry and genetic manipulation-guided by CDPK targets we already identified and those identified in
the second aim-to measure phosphorylation changes in vivo and determine the function of selected CDPK
targets. Together the second and third aims will characterize components of the pathways regulated by CDPKs,
and establish the molecular basis for their essential function.
The goal of this study is to map essential signaling networks regulated by apicomplexan CDPKs and inform
their potential as therapeutic targets. Newly identified substrates of individual kinases are likely novel
components of these pathways. This is relevant because we don't know the function of ~40% of apicomplexan
proteins or the pathways in which they participate. Furthermore, this study provides the basis for comparing
CDPK functions across apicomplexans, to uncover how this kinase family regulates the behavior of different
organisms.
7. 项目概要/摘要
顶复门寄生虫是重要的人类病原体,可引起多种疾病,包括终生疾病
世界上约四分之一至近百万人口有弓形虫无症状感染者
每年因疟疾死亡。为了破译它们的生物学特性并治疗它们引起的疾病,我们必须
了解这些成功病原体特有的信号传导途径。钙依赖性蛋白激酶
(CDPKs)是有吸引力的干预目标,因为它们在 apicomplexans 中是保守的,缺乏
来自动物宿主的基因组,对于寄生虫的生命周期至关重要。先前的工作表明
CDPKs 调节弓形虫生命周期中必需的各种过程,包括钙调节
分泌运动所需的特殊细胞器。尽管我们已经确定了负责的关键酶
对于弓形虫中的磷酸化,我们对底物知之甚少,更不知道其后果
这些修饰有助于寄生虫进入、存活和从受感染的宿主细胞中释放。
拟议的研究将绘制由 apicomplexan CDPK 调节的重要信号通路,并告知其
作为治疗靶点的潜力。该提案的三个具体目标将解决 CDPK 的不同方面
生物学,通过识别单个激酶的作用,表征它们调节的底物,以及
确定这些底物的功能。第一个目标是使用由
申请人专门抑制和研究两种CDPK在寄生虫生命周期中的功能,并延长了这一点
激酶家族其余四个成员的策略。这些实验将使我们能够比较
弓形虫中每个保守的 CDPK 调节细胞过程。第二个目标发挥我们的能力
标记和识别特定寄生虫激酶的靶标,之前绘制两个 CDPK 的底物图
已被证明对于寄生虫进入和退出宿主细胞至关重要。最终目标将使用定量质量
由我们已经确定的 CDPK 目标和那些在
第二个目标-测量体内磷酸化变化并确定所选CDPK的功能
目标。第二个和第三个目标将共同描述 CDPK 调节途径的组成部分,
并为其基本功能建立分子基础。
本研究的目的是绘制由 apicomplexan CDPKs 调节的重要信号网络,并告知
它们作为治疗靶点的潜力。新发现的单个激酶的底物可能是新颖的
这些途径的组成部分。这是相关的,因为我们不知道 apicomplexan 约 40% 的功能
蛋白质或它们参与的途径。此外,本研究还为比较
CDPK 在 apicomplexans 中发挥作用,以揭示该激酶家族如何调节不同的行为
有机体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Lourido其他文献
Sebastian Lourido的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Lourido', 18)}}的其他基金
Development and maintenance of chronic toxoplasmosis
慢性弓形虫病的发展和维持
- 批准号:
10181740 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Development and maintenance of chronic toxoplasmosis
慢性弓形虫病的发展和维持
- 批准号:
10579245 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Development and maintenance of chronic toxoplasmosis
慢性弓形虫病的发展和维持
- 批准号:
10374148 - 财政年份:2021
- 资助金额:
$ 48.75万 - 项目类别:
Control of parasite invasion by a microneme protein complex conserved in Apicomplexans
顶复门中保守的微线体蛋白复合物控制寄生虫入侵
- 批准号:
10531601 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Control of parasite invasion by a microneme protein complex conserved in Apicomplexans
顶复门中保守的微线体蛋白复合物控制寄生虫入侵
- 批准号:
9886387 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Control of parasite invasion by a microneme protein complex conserved in Apicomplexans
顶复门中保守的微线体蛋白复合物控制寄生虫入侵
- 批准号:
10302285 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Control of parasite invasion by a microneme protein complex conserved in Apicomplexans
顶复门中保守的微线体蛋白复合物控制寄生虫入侵
- 批准号:
10062827 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Identification of novel Toxoplasma genes involved in host-parasite interactions
鉴定参与宿主-寄生虫相互作用的新弓形虫基因
- 批准号:
9203042 - 财政年份:2016
- 资助金额:
$ 48.75万 - 项目类别:
Dissecting essential signaling pathways in apicomplexan parasites
剖析顶端复门寄生虫的重要信号通路
- 批准号:
8737992 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Dissecting essential signaling pathways in apicomplexan parasites
剖析顶端复门寄生虫的重要信号通路
- 批准号:
9349383 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48.75万 - 项目类别:
Research Grant














{{item.name}}会员




