Mitochondrial pore and synaptic stress in Alzheimer's disease
阿尔茨海默病中的线粒体孔和突触应激
基本信息
- 批准号:8264172
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-15 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AD transgenic miceAddressAgeAlzheimer&aposs DiseaseAnimalsAttenuatedAxonBiological AssayCalciumDefectDendritic SpinesDevelopmentEnergy MetabolismEnvironmentFoundationsGenerationsGeneticHealthHippocampus (Brain)LearningMaintenanceMediatingMembraneMembrane PotentialsMemoryMentorsMitochondriaMitochondrial SwellingMorphologyMusNeuronsOxidative StressOxygen ConsumptionPathogenesisPathologyPermeabilityPlayPrincipal InvestigatorPropertyProteinsResearchResistanceRespirationRoleStressSynapsesSynaptic TransmissionTestingTransgenic MiceVertebral columnbasecareercell motilitycyclophilin Ddensityenzyme activityinsightmitochondrial dysfunctionmitochondrial membranemitochondrial permeability transition poremouse modelnovelnovel therapeutic interventionoverexpressionprogramsresponsesynaptic failuresynaptic functiontrafficking
项目摘要
DESCRIPTION (provided by applicant): Mitochondrial dysfunction and synaptic loss are early pathological features of Alzheimer's disease. Recent studies indicate that mitochondrial alterations in AD underlie Abeta-mediated synaptic pathology as evidenced by the observations: 1) significant correlation of mitochondrial dysfunction with synaptic loss in AD; and 2) the protection of mitochondria attenuates Abeta -induced synaptic changes. However, the mechanisms of Abeta -induced mitochondrial dysfunction and the consequent synaptic damages have not fully delineated. Notably, mitochondria in neurons are heterogeneous in their properties. A sub-group of neuronal mitochondria locating at synapses or namely synaptic mitochondria play a pivotal role in maintaining synaptic activity/function due to their physical proximity to synapses. Thus, to elucidate the mechanisms underlying Abeta -potentiated synaptic mitochondrial dysfunction is of great significance to deepen our understanding of the synaptic pathology in the pathogenesis of the AD. In the preliminary studies, we have demonstrated that synaptic mitochondria undergo increased propensity towards cyclophilin D (cypD)-mediated mitochondrial permeability transition pore (mPTP) in the Abeta milieu, transgenic AD mice overexpressing Abeta. Along with these changes, Abeta -insulted synaptic mitochondria underwent respiration defects. In addition, Abeta treatment resulted in decreased axonal mitochondrial density and the loss of synapses in cultured hippocampal neurons. As a contrast, these detrimental effects on synaptic mitochondrial and synaptic alterations were significantly attenuated by the blockade of cypD through genetic depletion of cypD. Thus, I have formulated a hypothesis that cypD-mediated mPTP is a potential mechanism underlying Abeta-induced synaptic mitochondrial dysfunction and synaptic alterations. To address this concept, I will utilize an AD mouse model (APP mice) and a novel genetically manipulated transgenic mouse model (genetic cypD-deficient APP mice) as well as cypD-deficiency hippocampal neuron cultures for the studies proposed in this application. This project contains three aims: 1). to determine the impact of cypD-mediated mPTP on synaptic mitochondrial function in APP mice; 2) to determine the impact of cypD-mediated mPTP on synaptic (axonal) mitochondrial dynamics and motility in Abeta milieus; and 3) to determine whether cypD-mediated synaptic mitochondrial dysfunction contributes to Abeta -induced synaptic alterations in APP mice. Upon the completion of this project, I will determine the involvement of cypD mediated mPTP in Abeta induced synaptic mitochondrial dysfunction, and the impact of cypD mediated mPTP on synaptic mitochondrial dynamics and motility, and synaptic function as well as animal learning/memory ability in APP/ Abeta overexpressing mice. Finding derived from this study will have positive impact on the development of new therapeutic approaches for AD treatment. This project will also serve as a firm foundation of my scientific career to establish a research direction distinct from my mentors' by the combination of synaptic mitochondrial dysfunction and synaptic alterations in AD.
DESCRIPTION (provided by applicant): Mitochondrial dysfunction and synaptic loss are early pathological features of Alzheimer's disease. Recent studies indicate that mitochondrial alterations in AD underlie Abeta-mediated synaptic pathology as evidenced by the observations: 1) significant correlation of mitochondrial dysfunction with synaptic loss in AD; and 2) the protection of mitochondria attenuates Abeta -induced synaptic changes. However, the mechanisms of Abeta -induced mitochondrial dysfunction and the consequent synaptic damages have not fully delineated. Notably, mitochondria in neurons are heterogeneous in their properties. A sub-group of neuronal mitochondria locating at synapses or namely synaptic mitochondria play a pivotal role in maintaining synaptic activity/function due to their physical proximity to synapses. Thus, to elucidate the mechanisms underlying Abeta -potentiated synaptic mitochondrial dysfunction is of great significance to deepen our understanding of the synaptic pathology in the pathogenesis of the AD. In the preliminary studies, we have demonstrated that synaptic mitochondria undergo increased propensity towards cyclophilin D (cypD)-mediated mitochondrial permeability transition pore (mPTP) in the Abeta milieu, transgenic AD mice overexpressing Abeta. Along with these changes, Abeta -insulted synaptic mitochondria underwent respiration defects. In addition, Abeta treatment resulted in decreased axonal mitochondrial density and the loss of synapses in cultured hippocampal neurons. As a contrast, these detrimental effects on synaptic mitochondrial and synaptic alterations were significantly attenuated by the blockade of cypD through genetic depletion of cypD. Thus, I have formulated a hypothesis that cypD-mediated mPTP is a potential mechanism underlying Abeta-induced synaptic mitochondrial dysfunction and synaptic alterations. To address this concept, I will utilize an AD mouse model (APP mice) and a novel genetically manipulated transgenic mouse model (genetic cypD-deficient APP mice) as well as cypD-deficiency hippocampal neuron cultures for the studies proposed in this application. This project contains three aims: 1). to determine the impact of cypD-mediated mPTP on synaptic mitochondrial function in APP mice; 2) to determine the impact of cypD-mediated mPTP on synaptic (axonal) mitochondrial dynamics and motility in Abeta milieus; and 3) to determine whether cypD-mediated synaptic mitochondrial dysfunction contributes to Abeta -induced synaptic alterations in APP mice. Upon the completion of this project, I will determine the involvement of cypD mediated mPTP in Abeta induced synaptic mitochondrial dysfunction, and the impact of cypD mediated mPTP on synaptic mitochondrial dynamics and motility, and synaptic function as well as animal learning/memory ability in APP/ Abeta overexpressing mice. Finding derived from this study will have positive impact on the development of new therapeutic approaches for AD treatment. This project will also serve as a firm foundation of my scientific career to establish a research direction distinct from my mentors' by the combination of synaptic mitochondrial dysfunction and synaptic alterations in AD.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heng Du其他文献
Heng Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heng Du', 18)}}的其他基金
mtDNA leakage and STING-dependent microglial innate immune response in Alzheimer's disease
阿尔茨海默病中 mtDNA 渗漏和 STING 依赖性小胶质细胞先天免疫反应
- 批准号:
10549825 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
mtDNA leakage and STING-dependent microglial innate immune response in Alzheimer's disease
阿尔茨海默病中 mtDNA 渗漏和 STING 依赖性小胶质细胞先天免疫反应
- 批准号:
10346449 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
GHSR1a and Hippocampal Pathology in Alzheimer's Disease
阿尔茨海默病中的 GHSR1a 和海马病理学
- 批准号:
10163763 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
GHSR1a and hippocampal pathology in Alzheimer's Disease
阿尔茨海默病中的 GHSR1a 和海马病理学
- 批准号:
9762825 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
GHSR1a and Hippocampal Pathology in Alzheimer's Disease
阿尔茨海默病中的 GHSR1a 和海马病理学
- 批准号:
10393665 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
GHSR1a and hippocampal pathology in Alzheimer's Disease
阿尔茨海默病中的 GHSR1a 和海马病理学
- 批准号:
9918235 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
GHSR1a and Hippocampal Pathology in Alzheimer's Disease
阿尔茨海默病中的 GHSR1a 和海马病理学
- 批准号:
10266217 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Mitochondrial ATP Synthase Dysfunction and Synaptic Stress in Alzheimer's Disease
阿尔茨海默病中的线粒体 ATP 合酶功能障碍和突触应激
- 批准号:
9160954 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Mitochondrial ATP Synthase Dysfunction and Synaptic Stress in Alzheimer's Disease
阿尔茨海默病中的线粒体 ATP 合酶功能障碍和突触应激
- 批准号:
10266216 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Mitochondrial pore and synaptic stress in Alzheimer's disease
阿尔茨海默病中的线粒体孔和突触应激
- 批准号:
8111441 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant