Multi-scale modeling of sleep behaviors in social networks
社交网络中睡眠行为的多尺度建模
基本信息
- 批准号:8453066
- 负责人:
- 金额:$ 49.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-18 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAffectBehaviorBehavioralBiologicalBiological ProcessCaffeineCar PhoneCardiovascular DiseasesCircadian RhythmsCognitiveCuesDataDevelopmentDevicesDiabetes MellitusDrug usageElectronicsFatigueHabitsHealthHormonesHumanIndividualIndividual DifferencesInpatientsInternetLearningLengthLifeLightMeasuresMelatoninMetabolicMethodsModelingMoodsNatureNetwork-basedObesityOutcomeOutpatientsParticipantPatternPattern RecognitionPerformancePharmaceutical PreparationsPhysiologicalPhysiologyPopulationPopulation HeterogeneityPropertyRecoveryRisk-TakingScheduleSimulateSkin TemperatureSleepSleep DeprivationSocial InteractionSocial NetworkStatistical ModelsStimulusStressStudentsSystemTechniquesTeenagersTestingTimeWeight GainWitWorkawakebasecognitive functioncohortcomputerized data processingimmune functionimprovedinnovationinsightmathematical modelmulti-scale modelingnetwork modelspublic health relevanceresearch studyresponsesensorsleep onsetsocialtoolundergraduate studentyoung adult
项目摘要
DESCRIPTION (provided by applicant): Sleep is critical to a wide range of biological functions. Inadequate sleep results in impaired cognitive performance and mood, and adverse health outcomes including obesity, diabetes, and cardiovascular disease. Recent evidence suggests that sleep behaviors can spread between individuals connected by a social network and that these behaviors can even influence drug use in teenagers. While models exist separately for quantifying connectivity within social networks and for modeling sleep, there are currently no combined models for predicting and studying the emergent dynamics of sleep behaviors within social networks.
We therefore propose to develop multi-scale physiologically-based models of the effects of social interactions on sleep behaviors. We have assembled a trans-disciplinary team of individuals who have: (i) developed mathematical methods for quantifying social network interactions; (ii) developed a physiologically based model of sleep and circadian physiology, including the effects of wake-promoting stimuli and drugs; (iii) studied healthy and pathological sleep behaviors under inpatient and outpatient conditions, including in undergraduate students; (iv) developed techniques for collecting multiple physiological and behavioral variables; and (v) studied pattern recognition and signal processing techniques for analyzing multimodal data.
We will develop statistical and mathematical models from experimental data collected from 8 groups of closely-connected MIT undergraduates using mobile phones and wearable sensors to measure sleep patterns and duration, light exposure, subjective measures of sleepiness and mood, and social interactions including texting, calls, internet use, and spatial proximity to other participants. We will determine how social interactions, sleep duration and timing, light exposure, sleepiness and mood interact. These social interaction effects will then be added to our physiological sleep and circadian model, which will also be extended from the individual to the population level, while the physiological model results will inform the social network model work.
Once developed, the mathematical model will be used to explore how emergent dynamics depend on network properties. Specifically, we will simulate the student network, including the observed rates and effects of social interactions. We will then test the effects of modifying the network properties, including the strengths of interactions and the degree of population heterogeneity (model parameter variability).
We anticipate that the mathematical model developed in this project will provide a new means of predicting the dynamics of sleep behaviors within social networks. Due to its multi-scale nature, the model will relate observations at the network level to interactions between individuals. This will allow us to simulate candidate strategies for intervening in populations wit unhealthy sleep behaviors. Given the alarming increase in insufficient sleep in the U.S., and the rapidly escalating use of social media, establishing models that can be used to improve sleep behaviors could potentially improve multiple health outcomes.
描述(由申请人提供):睡眠对广泛的生物功能至关重要。睡眠不足会导致认知能力和情绪受损,并导致肥胖、糖尿病和心血管疾病等不良健康后果。最近的证据表明,睡眠行为可以在社交网络连接的个体之间传播,这些行为甚至可以影响青少年的药物使用。虽然分别存在用于量化社交网络内的连通性和用于对睡眠建模的模型,但是目前没有用于预测和研究社交网络内的睡眠行为的涌现动态的组合模型。
因此,我们建议开发多尺度的基于生理学的模型,社会互动对睡眠行为的影响。我们已经组建了一个跨学科的个人团队,他们:(i)开发了量化社交网络互动的数学方法;(ii)开发了一个基于生理学的睡眠和昼夜生理学模型,包括唤醒刺激和药物的影响;(iii)研究了住院和门诊条件下的健康和病理睡眠行为,包括本科生;(iv)发展收集多种生理和行为变量的技术;及(v)研究模式识别和信号处理技术,以分析多模式数据。
我们将开发统计和数学模型,从8组密切联系的麻省理工学院本科生使用移动的手机和可穿戴传感器收集的实验数据来测量睡眠模式和持续时间,光照,嗜睡和情绪的主观测量,以及社交互动,包括短信,电话,互联网使用和空间接近其他参与者。我们将确定社会互动,睡眠时间和时间,光照,嗜睡和情绪如何相互作用。然后,这些社会互动效应将被添加到我们的生理睡眠和昼夜节律模型中,该模型也将从个体扩展到群体水平,而生理模型结果将为社会网络模型的工作提供信息。
一旦开发出来,数学模型将用于探索涌现动力学如何依赖于网络特性。具体来说,我们将模拟学生网络,包括观察到的社交互动的速率和影响。然后,我们将测试修改网络属性的效果,包括相互作用的强度和群体异质性的程度(模型参数变异性)。
我们期望在这个项目中开发的数学模型将提供一种新的方法来预测社交网络内的睡眠行为的动态。由于其多尺度性质,该模型将在网络层面上的观察与个体之间的相互作用联系起来。这将使我们能够模拟干预具有不健康睡眠行为的人群的候选策略。鉴于美国睡眠不足的情况惊人增加,以及社交媒体的迅速升级,建立可用于改善睡眠行为的模型可能会改善多种健康结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles A Czeisler其他文献
Charles A Czeisler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles A Czeisler', 18)}}的其他基金
Real-time breath metabolomics: A new direction for circadian biomarkers
实时呼吸代谢组学:昼夜节律生物标志物的新方向
- 批准号:
10526014 - 财政年份:2022
- 资助金额:
$ 49.43万 - 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:
10458738 - 财政年份:2021
- 资助金额:
$ 49.43万 - 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:
10297979 - 财政年份:2021
- 资助金额:
$ 49.43万 - 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:
10650324 - 财政年份:2021
- 资助金额:
$ 49.43万 - 项目类别:
Proteomic and Transcriptomic Biomarkers of Circadian Timing
昼夜节律的蛋白质组和转录组生物标志物
- 批准号:
10246289 - 财政年份:2020
- 资助金额:
$ 49.43万 - 项目类别:
Recurrent circadian disruption & pancreatic B-cell responsiveness in older peopl
周期性昼夜节律紊乱
- 批准号:
8598130 - 财政年份:2013
- 资助金额:
$ 49.43万 - 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:
8373472 - 财政年份:2012
- 资助金额:
$ 49.43万 - 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:
8544488 - 财政年份:2012
- 资助金额:
$ 49.43万 - 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:
8687728 - 财政年份:2012
- 资助金额:
$ 49.43万 - 项目类别:
相似海外基金
NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
- 批准号:
2208822 - 财政年份:2023
- 资助金额:
$ 49.43万 - 项目类别:
Fellowship Award
THE AFFECT OF REGINAOL CHATACTERISTIC ON TRAVEL BEHAVIOR AND HELTH FROM DRIVING CESSATON
雷吉诺尔特征对驾驶塞萨顿旅行行为和健康的影响
- 批准号:
20K04741 - 财政年份:2020
- 资助金额:
$ 49.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does financial education affect financial behavior?
财商教育会影响财商行为吗?
- 批准号:
19K01769 - 财政年份:2019
- 资助金额:
$ 49.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How the online shopping and flea market apps affect the consumer behavior and cross border electronic commerce?
网购和跳蚤市场应用程序如何影响消费者行为和跨境电子商务?
- 批准号:
18K01798 - 财政年份:2018
- 资助金额:
$ 49.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
When free trade agreement meets competition----How does EU-Korea FTA affect Japanese firms' investment behavior
当自贸协定遇上竞争——欧盟-韩国自贸协定如何影响日本企业的投资行为
- 批准号:
18K12777 - 财政年份:2018
- 资助金额:
$ 49.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of the relationship between the maternal mental health, and the development and behavior of children, and the psychosocial factors that affect them
检查母亲心理健康与儿童的发展和行为之间的关系以及影响他们的心理社会因素
- 批准号:
17K16375 - 财政年份:2017
- 资助金额:
$ 49.43万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 49.43万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 49.43万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 49.43万 - 项目类别:
Do short term changes in atmospheric pressure affect the calling behavior of male crickets
大气压力的短期变化会影响雄性蟋蟀的叫声行为吗
- 批准号:
467890-2014 - 财政年份:2014
- 资助金额:
$ 49.43万 - 项目类别:
University Undergraduate Student Research Awards