Mechanical and Dynamical Regulation of Protein Kinases

蛋白激酶的机械和动态调节

基本信息

项目摘要

DESCRIPTION (provided by applicant): Protein kinases are a family of key enzymes that regulate cellular function under healthy conditions and misregulate cellular function in diseased conditions, such as cancer. Protein kinases are complex, highly-regulated, and dynamic enzymes whose primary function is not to turn over substrate but rather to integrate biological signals to make targeted post-translational modifications (phosphorylation) in specific substrates. Since the catalytic core of kinases is structurally conserved across the whole family, kinase structure is not sufficient to provide precise control over activity and substrate specificity. Drug design against kinases is challenging because this conserved active site structure can lead to off-target binding, which takes drug away from the desired target and causes unforeseen side effects. In order to design novel drugs that target non-catalytic sites in the kinase and drugs that might operate by kinetic rather than thermodynamic control, it is imperative to understand how dynamics regulate function in kinases at mechanistic level, and how this dynamic regulation evolved. To predict how novel drugs might modulate kinase function, it is important to develop computational tools to observe how these dynamics are altered by perturbations such as mutations or substrate binding. To study functional kinase dynamics in detail, NMR spectroscopy will be combined with advanced conformational sampling methods that take advantage of commodity graphics processors to study slow motions relevant to catalysis. Markov State Model methods will be improved to interpret NMR chemical shifts and relaxation-dispersion data at an atomic level. A covariance of mechanical stress approach will be developed along with transfer entropy analysis in internal coordinates to identify mechanistic cause and effect in active site opening, the rate- limiting step in catalysis. Residues implicated by these analyses will be mutated, and the kinase's slow dynamics studied by NMR. The role of dynamics in substrate specificity will be studied by monitoring the substrate's effects on kinase dynamics - locally, and at distal substrate docking sites, using molecular dynamics simulations with and without substrate peptides. Dynamical changes caused by substrate peptide binding will be compared across multiple kinases to identify the conservation of dynamic coupling between the active site and a distal C-lobe substrate docking site, and to potentially guide design of novel drugs that could potentially have fewer off-target effects or that might alter a kinase's substrate specificity.
描述(由申请人提供):蛋白激酶是在健康状况下调节细胞功能和在疾病状况(如癌症)下误调节细胞功能的关键酶家族。蛋白激酶是复杂的、高度调节的和动态的酶,其主要功能不是翻转底物,而是整合生物信号以在特定底物中进行靶向翻译后修饰(磷酸化)。由于激酶的催化核心在整个家族中结构保守,激酶结构不足以提供对活性和底物特异性的精确控制。针对激酶的药物设计是具有挑战性的,因为这种保守的活性位点结构可能导致脱靶结合,这会使药物远离所需的靶标并导致不可预见的副作用。为了设计靶向激酶非催化位点的新型药物和可能通过动力学而不是热力学控制来操作的药物,必须了解动力学如何在机制水平上调节激酶的功能,以及这种动态调节是如何进化的。为了预测新药如何调节激酶功能,重要的是开发计算工具来观察这些动力学如何被突变或底物结合等扰动所改变。为了详细研究功能性激酶动力学,NMR光谱学将与先进的构象采样方法相结合,该方法利用商品图形处理器来研究与催化相关的慢动作。将改进马尔可夫状态模型方法,以在原子水平上解释NMR化学位移和弛豫色散数据。将沿着与内坐标中的转移熵分析一起开发机械应力方法的协方差,以识别活性位点开放(催化中的速率限制步骤)中的机械原因和影响。这些分析所涉及的残基将被突变,并且激酶的缓慢动力学通过NMR研究。通过监测底物对激酶动力学的影响,将研究底物特异性中动力学的作用-局部和远端底物对接位点,使用有和无底物肽的分子动力学模拟。将在多种激酶中比较由底物肽结合引起的动态变化,以鉴定活性位点和远端C端半叶底物对接位点之间的动态偶联的保守性,并潜在地指导可能具有更少脱靶效应或可能改变激酶的底物特异性的新型药物的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Lee McClendon其他文献

Christopher Lee McClendon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Lee McClendon', 18)}}的其他基金

Mechanical and Dynamical Regulation of Protein Kinases
蛋白激酶的机械和动态调节
  • 批准号:
    8199019
  • 财政年份:
    2011
  • 资助金额:
    $ 4.92万
  • 项目类别:
Mechanical and Dynamical Regulation of Protein Kinases
蛋白激酶的机械和动态调节
  • 批准号:
    8588944
  • 财政年份:
    2011
  • 资助金额:
    $ 4.92万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.92万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了