Principles of Therapy in Cerebellar Disease: Explorations in Ion Channel Mutants
小脑疾病的治疗原则:离子通道突变体的探索
基本信息
- 批准号:8195580
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:4-AminopyridineAffectAlcoholsAminopyridinesAnimalsAnteriorAreaAtaxiaBaclofenBathingBehaviorBehavioralBiophysicsBlurred visionBrainCalcium ChannelCerebellar AtaxiaCerebellar DiseasesCerebellar vermis structureCerebellumCharacteristicsChemicalsChronicClinicalDataDefectDevelopmentDiseaseDrug usageDyskinetic syndromeEducational process of instructingElectrophysiology (science)Employee StrikesEngineeringEquilibriumEtiologyExcisionExhibitsExperimental ModelsEyeEye MovementsFire - disastersFreedomFunctional disorderGene MutationGenesGeneticGoalsHeadHigh PrevalenceHomologous GeneHumanHyperactive behaviorIn VitroInborn Genetic DiseasesInflammatoryInheritedInjection of therapeutic agentInjuryInvestigationIon ChannelKnowledgeLeadLeftLifeLimb AtaxiaLinkMembraneMilitary PersonnelMotorMouse StrainsMovementMultiple SclerosisMusMutant Strains MiceMutationNeurologistNeuronsP-Q type voltage-dependent calcium channelPathologic NystagmusPatientsPatternPeriodicityPharmaceutical PreparationsPharmacological TreatmentPharmacotherapyPhysical therapyPhysiologicalPhysiologyPopulationPositioning AttributePotassium ChannelPrevalenceProceduresProcessPublishingPurkinje CellsReflex actionResearchResistanceSampling BiasesServicesSignal TransductionSliceSourceSpecific qualifier valueStressStrokeStructureSymptomsTestingTherapeuticTherapeutic EffectTraumatic Brain InjuryVeteransVisionVisual impairmentWorkbehavior observationcell motilitydisabilitydrug developmentimprovedin vivomotor controlmouse modelmutantneurophysiologyoculomotoroperationpublic health relevanceresearch studyresponsetheoriestherapy developmenttooltumorvestibulo-ocular reflexyoung adult
项目摘要
DESCRIPTION (provided by applicant):
Today's neurologists have few therapies to offer patients suffering the limb ataxia, imbalance, and visual impairment resulting from diseases of the cerebellum. Such patients are common in the veteran population and becoming more so due to traumatic brain injuries suffered in recent military operations. Recent developments, however, suggest that highly effective drugs can be developed: Two drugs that influence neuronal potassium channels have been shown to ameliorate cerebellar deficits in humans and mice, and may provide starting points to develop more efficacious and tolerable drugs. However, the sources of their therapeutic effects are debatable. Likewise, a new theory that ataxia can originate in disturbed rhythmicity of cerebellar Purkinje cells suggests procedures for drug development, but the theory is controversial and requires more investigation. This project will lay a better groundwork for drug development by clarifying the origins of cerebellar motor dysfunction and mechanism of one existing treatment. We focus on ocular motility abnormalities in mice carrying mutations of the CACNA1A gene of the P/Q (CaV2.1) calcium channel, but the results should be applicable to other causes and manifestations of cerebellar dysfunction. Specific Aim 1 involves eye movement recordings in the CACNA1A mutant tottering, and in normal mice following pharmacological inhibition of the cerebellar flocculus, to determine the cause of the abnormal vertical eye positions found in ataxic mice. The result will determine whether mice can be used to test treatments for downbeat nystagmus, a human manifestation of cerebellar disease that results in blurred vision. Specific Aim 2 tests the theory that ataxia in calcium channel mutants originates in disturbed Purkinje cell rhythmicity, through recordings of Purkinje cells in the flocculus and anterior vermis of normal mice and the CACNA1A mutant rocker. One goal of these recordings is to determine whether rocker Purkinje cells exhibit, as the rhythmicity theory predicts, rhythmicity intermediate between that of normal animals and the more severely affected CACNA1A mutant, tottering. Another goal of the recordings is to reassess whether CACNA1A mutant Purkinje cells modulate their firing normally in response to natural stimulation. This claim is central to the rhythmicity theory, but the experiments that support the claim may have been affected by sampling bias. Specific aim 3 assesses the therapeutic mechanisms of 4- aminopyridine, one of the drugs that has recently been shown to provide some benefits in cerebellar disorders. We will record eye movements in tottering following systemic and intrafloccular injections of 4- aminopyridine. Results of these experiments will allow us to test published speculations that aminopyridines exert their beneficial effects by restoring normal Purkinje cell activity.
PUBLIC HEALTH RELEVANCE:
Disorders of the cerebellum cause loss of coordination (ataxia), imbalance, and blurred vision. They arise from many causes, including (but not limited to) traumatic brain injury (TBI), damage during tumor resection, stroke, inflammatory diseases (such as multiple sclerosis), chemicals (including medications and alcohol), degeneration due to genetic errors, other degenerative processes whose causes have yet to be discovered, and inherited mutations of genes that ultimately control neuronal activity patterns. Although no quantitative data are available, neurologists like the applicant recognize that patients with chronic cerebellar disorders are common in the veteran population. The high prevalence arises because there are so many causes of cerebellar dysfunction, and because they are generally compatible with long life and may begin early (i.e., during the years of military service or shortly after). The prevalence of veterans with chronic cerebellar dysfunction due to TBI is increasing due to Operation Enduring Freedom and Operation Iraqi Freedom (OEF/OIF), since cerebellar dysfunction is often prominent in TBI [9, 42]. Unfortunately, while in rare instances the cause of a progressive cerebellar damage can be discovered and arrested, neurologists like the applicant have had almost no treatments to offer to improve the symptoms of damage that has already occurred. Cerebellar dysfunction is notoriously resistant to physical therapy and physical therapy strategies generally concentrate on teaching patients to avoid specific types of movements [5]. Likewise, except in very special circumstances (such as the use of the drug baclofen to arrest ocular oscillations due to injuries of the vestibulocerebellum [31]), there have been no pharmacological treatments for cerebellar dysfunction. Recent developments, however, suggest that better therapies might be developed. Certain types of progressive cerebellar dysfunction are now known to arise from defects of genes involved in cerebellar signaling - defects that could potentially be corrected with a medication. Also, a class of drugs (aminopyridines) has recently been found to improve specific symptoms of various cerebellar disorders. The existence of these drugs supports the hope that it should be possible to develop more effective, tolerable, and practical drug therapies. The search for better treatments would be aided by a better understanding of how specific diseases lead to the symptoms of cerebellar disease, and the mechanisms by which the drugs we do have produce their benefits. The overall goal of this project is to facilitate development of better therapies for cerebellar dysfunction by advancing this understanding of the mechanisms of motor dysfunction and of the drugs that have already been shown to produce some benefit. The project focuses on the cerebellar disorders arising from mutations of the genes that specify the structure of neuronal calcium channels, because: 1) Such "channelopathy" diseases form one of the largest groups of heritable, degenerative, cerebellar disorders in which the cause of the disease is known; 2) mouse models of the diseases exist and have already been the subject of many studies; 3) it is particularly reasonable to hope that drugs may be developed that could compensate for the effects of these mutations on neuronal function; 4) previous promising work on drug therapies has been conducted in these diseases but has left many questions; 5) there are reasons to believe that therapies developed for these disorders may be used to treat cerebellar dysfunction arising from other causes. The application stresses the eye movement functions of the cerebellum because: 1) Eye movement control is probably the best understood aspect of cerebellar function, and thus the area in which we can best hope to determine how a disease leads to abnormal movements and how a drug ameliorates the abnormalities; 2) eye movements are affected early in many cerebellar disorders and thus a particularly promising and important target for a drug therapy; 3) we can build upon the research that has already been done on the cause and treatment of eye movement abnormalities in the channelopathy diseases. The specific goals of the application include: 1)To determine whether one of the eye movement abnormalities of mice with cerebellar disorders is the appropriate experimental model for a somewhat different eye movement abnormality that occurs in the human cerebellar patients; 2) to test a new theory of how channel mutations cause cerebellar dysfunction by testing assumptions underlying, and predictions of, that theory; 3) to test theories of the mechanism of action of 4-aminopyridine, which has recently been shown to improve cerebellar function in mice and humans.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN SAMUEL STAHL其他文献
JOHN SAMUEL STAHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN SAMUEL STAHL', 18)}}的其他基金
Purkinje Cell Rhythmicity, Synchrony, and Enhancing Function in Cerebellar Disorders
小脑疾病中浦肯野细胞的节律性、同步性和增强功能
- 批准号:
10337182 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Purkinje Cell Rhythmicity, Synchrony, and Enhancing Function in Cerebellar Disorders
小脑疾病中浦肯野细胞的节律性、同步性和增强功能
- 批准号:
9490189 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Purkinje Cell Rhythmicity, Synchrony, and Enhancing Function in Cerebellar Disorders
小脑疾病中浦肯野细胞的节律性、同步性和增强功能
- 批准号:
9346859 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Principles of Therapy in Cerebellar Disease: Explorations in Ion Channel Mutants
小脑疾病的治疗原则:离子通道突变体的探索
- 批准号:
8391125 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Principles of Therapy in Cerebellar Disease: Explorations in Ion Channel Mutants
小脑疾病的治疗原则:离子通道突变体的探索
- 批准号:
7786277 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Principles of Therapy in Cerebellar Disease: Explorations in Ion Channel Mutants
小脑疾病的治疗原则:离子通道突变体的探索
- 批准号:
7687751 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Vestibulocerebellar function in channelopathy mutants
通道病突变体的前庭小脑功能
- 批准号:
6708038 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Vestibulocerebellar function in channelopathy mutants
通道病突变体的前庭小脑功能
- 批准号:
6438428 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Vestibulocerebellar function in channelopathy mutants
通道病突变体的前庭小脑功能
- 批准号:
6622048 - 财政年份:2002
- 资助金额:
-- - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship