Reducing wound bioburden and biofilm formation using a nanoscale wound surface en
使用纳米级伤口表面减少伤口生物负荷和生物膜形成
基本信息
- 批准号:8518098
- 负责人:
- 金额:$ 21.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAdverse effectsAgeAmino AcidsAnti-Bacterial AgentsBacillus subtilisBackBacteriaBedsCaringChronicDataDebridementDefense MechanismsEffectivenessElderlyEngineeringFilmGoalsHealedHealthHealth Care CostsHealthcareHost DefenseHumanImmobilizationImpaired wound healingIn VitroIncidenceInfectionInterventionInvestigationLeucineMediatingMedicalMethionineMethodsMicrobial Antibiotic ResistanceMicrobial BiofilmsModelingOrganismPopulationPreventionProceduresProductivityPseudomonas aeruginosaQuality of lifeReportingResearch PersonnelResearch Project GrantsResearch SupportResistanceSepsisSilverSkinSolutionsStaphylococcus aureusStructureSurfaceTestingTherapeuticThickTryptophanTyrosineUnited StatesUnited States National Institutes of HealthWound Infectionantimicrobialantimicrobial drugarmbasecostcytotoxicityenantiomerhealingimprintimprovedin vivoinnovationkillingsmicrobialmicrobial colonizationnanonanoparticlenanoparticulatenanoscalenanostructurednovelnovel strategiesopen woundpreventsocioeconomicswound
项目摘要
DESCRIPTION (provided by applicant): Management of chronic wounds represent a major healthcare challenge responsible for over $15 billion in expenses annually. Wound surface sepsis, in particular biofilm formation, is a significant factor in nonhealing wounds. In chronic wounds, >60% have been observed to have clear evidence of a biofilm. Further, NIH has estimated that 65-80% of microbial infections in humans are biofilm-mediated. Biofilms are characterized by resistance to host defenses and to therapeutics that would otherwise have efficacy against the organisms planktonic state. Thus, biofilms present two distinct challenges: 1) the biofilm must be removed or dispersed to reduce bacterial defense mechanisms; and 2) effective antimicrobial agents applied to suppress the resident bacteria. In this application, we seek to address this problem by investigating a novel intervention with potential to prevent chronic colonization of wounds and disperse pre-existing biofilms. The innovation underlying our approach revolves around engineering the surfaces of wound beds to both promote the dissolution of biofilm bacteria back to a planktonic state, where they are more susceptible to antimicrobial agents, and immobilize antimicrobial agents at the wound surface where biofilm formation occurs. Our approach involves incorporation of absorbable nanobeads loaded with antibiofilm agents in a nanoscopic thin film, manufactured of polyelectrolyte multilayers containing silver nanoparticles, that is used to re-engineer the wound surface to increase its resistance to microbial colonization and biofilm formation. This structured engineered approach allows effective antimicrobial action with very low non-toxic concentrations of active agents. The innovative combination of these approaches in a single nanostructured film has the potential to markedly increase anti-biofilm and antimicrobial efficacy in vivo. In particular, use of nano-beads
permits precise control over concentrations and release rates of the antibiofilm agent. They also penetrate and create microdomains within the biofilm, increasing surface contact by >80%, to increase adsorption of antibiofilm and antimicrobial agents concurrently and generating progressive dispersion-kill zones emanating from the beads at a nanoscale level. The central hypothesis of this study, supported by exciting preliminary data, is that incorporating select D- and L- amino acids into the wound bed will reduce bacterial biofilm formation and increase biofilm dissolution. A secondary hypothesis is that this approach will enhance the antimicrobial activity of silver nanoparticles immobilized at the wound surface. To address these goals we propose 3 Aims. In Aim 1, we will evaluate the ability of select D- and L- amino acids immobilized in polyelectrolyte thin films and loaded into absorbable PLGA beads to prevent a biofilm from forming and to stimulate dissolution of existing biofilms of Pseudomonas aeruginosa and Staphylococcus aureus in vitro . In Aim 2, we will optimize the integration of select amino acids and nano-beads onto model wound surfaces (full and partial thickness skin wounds), using polyelectrolyte thin film immobilization methods, and evaluate their efficacy in preventing biofilm formation and biofilm dissolution in vivo; and in Aim 3, we will test the hypothesis that combined application of silver nanoparticles and select amino acids further reduces biofilm formation and minimizes microbial bioburden in wounds in vivo. At the conclusion of this study, we expect to provide proof of concept that a two-armed approach to wound biofilms contained in an integrated nanoscale wound bed engineering platform will have increased efficacy against biofilms with reduced cytotoxicity in the wound bed. This approach is labile and generalizable to immobilization of other antibiofilm and antimicrobial agents. Thus, upon successful completion of this R21 application, we will seek support for research (via the R01 mechanism) that will broaden the scope of these investigations in optimizing these strategies and in evaluating the efficacy of an array of antimicrobial and antibiofilm agents with the goal of maximizing the ability to suppress wound bed sepsis and improve healing of chronic open wounds.
描述(由申请人提供):慢性伤口的管理是一项重大的医疗保健挑战,每年的费用超过150亿美元。创面败血症,特别是生物膜的形成,是造成伤口不愈合的重要因素。在慢性伤口中,60%的伤口有明显的生物膜。此外,美国国立卫生研究院估计,65-80%的人类微生物感染是由生物膜介导的。生物膜的特点是抵抗宿主防御和治疗,否则会对生物体的浮游状态有效。因此,生物膜面临两个截然不同的挑战:1)必须去除或分散生物膜以减少细菌的防御机制;2)使用有效的抗菌药物抑制常驻细菌。在这个应用中,我们试图通过研究一种新的干预措施来解决这个问题,这种干预措施有可能防止伤口的慢性定植和分散预先存在的生物膜。我们方法背后的创新围绕着伤口床表面的工程设计,既促进生物膜细菌的溶解回到浮游状态,在那里它们对抗菌剂更敏感,又将抗菌剂固定在生物膜形成的伤口表面。我们的方法包括在纳米级薄膜中加入可吸收的纳米球,该薄膜由含有银纳米粒子的聚电解质多层制成,用于重新设计伤口表面,以增加其对微生物定植和生物膜形成的抵抗力。这种结构化的工程方法允许有效的抗菌作用与非常低的无毒浓度的活性剂。这些方法在单一纳米结构薄膜中的创新组合有可能显着增加体内的抗生物膜和抗菌功效。特别是纳米珠的使用
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduction in wound bioburden using a silver-loaded dissolvable microfilm construct.
- DOI:10.1002/adhm.201300537
- 发表时间:2014-06
- 期刊:
- 影响因子:10
- 作者:Herron, Maggie;Agarwal, Ankit;Kierski, Patricia R.;Calderon, Diego F.;Teixeira, Leandro B. C.;Schurr, Michael J.;Murphy, Christopher J.;Czuprynski, Charles J.;McAnulty, Jonathan F.;Abbott, Nicholas L.
- 通讯作者:Abbott, Nicholas L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES Joseph CZUPRYNSKI其他文献
CHARLES Joseph CZUPRYNSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES Joseph CZUPRYNSKI', 18)}}的其他基金
Reducing wound bioburden and biofilm formation using a nanoscale wound surface en
使用纳米级伤口表面减少伤口生物负载和生物膜形成
- 批准号:
8386272 - 财政年份:2012
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
8266731 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
7456455 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
7652331 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
8690986 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
8502383 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
7233389 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
8109171 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
7882433 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
Comparative Biomedical Sciences Training Program
比较生物医学科学培训计划
- 批准号:
9097827 - 财政年份:2007
- 资助金额:
$ 21.29万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




