Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
基本信息
- 批准号:8448581
- 负责人:
- 金额:$ 18.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyApplications GrantsAreaBase of the BrainBasic ScienceBiological MarkersBrainBrain MappingBuffersCharacteristicsClinicalComb animal structureComplexConsensusCoupledCouplingDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEducationElectrocorticogramElectrophysiology (science)ElementsEnsureEnvironmentEthicsEtiologyFrequenciesFunctional Magnetic Resonance ImagingFundingFutureGoalsGrantHealthHumanImageImage AnalysisInterventionInvestigationKnowledgeLaboratoriesLanguageMagnetic Resonance ImagingMapsMeasuresMediatingMentorshipMethodologyMethodsModalityMotorMultivariate AnalysisNeuronsNeurosciencesPatternPerfusionPublishingRelative (related person)ResearchResearch PersonnelResearch ProposalsResourcesRoleSignal TransductionSolidSpecificityStatistical ModelsStimulusStructureSystemTimeTrainingUniversitiesWorkadvanced systembaseblood oxygen level dependentcareercareer developmentdesignexperienceimprovedinsightmedical specialtiesmultimodalityneuroimagingnoveloptical imagingprogramsresearch and developmentresearch studyresponserestorationskillsspatial relationshipstatistics
项目摘要
DESCRIPTION (provided by applicant): Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) is used ubiquitously to map the human brain, both in health and disease. Instead of directly measuring neuronal activity, BOLD fMRI detects perfusion-dependent signals that are coupled to neuronal activity. The accurate interpretation of BOLD fMRI signals is compromised by an incomplete understanding of the precise relationship between electrophysiological activity, functional anatomy, and function perfusion. The overall goal of this research program is to examine the precise relationship between electrophysiology, connectivity, and BOLD fMRI signals across tasks, cortices, and disease states. Candidate: Given his solid neuroscience training, thorough general and sub-specialty (functional) neurosurgical training, and quality research experiences, Dr. Nader Pouratian has already published extensively in the field of human brain mapping. This career development and research proposal represents a natural extension of his previous work which employed multimodality imaging to characterize the etiology, limitations, and capacities of perfusion-dependent brain mapping signals in humans using fMRI, optical imaging, and electrocortical stimulation mapping (ESM). In an environment rich in imaging expertise, the immediate goals are to develop and ensure the breadth and the depth to function as THE imaging expert on a grant proposal. Specific career development goals of this proposal are (1) to gain expertise in additional brain mapping methodologies (electrocorticography and diffusion tractography) in order to become a more comprehensive and well-rounded brain mapping expert (2) to gain facility with and proficiency in complex statistics and signal and image analyses (3) to augment the candidate's fund of knowledge in advanced systems neuroscience (4) to obtain advanced training in the scientific method and (5) to ensure continued training in the ethical conduct of research. These goals will be accomplished by means of hands-on laboratory experience, mentorship and guidance of world-renowned leaders (Drs. Arthur Toga, Susan Bookheimer, Itzhak Fried, Robert Knight, and Jeffrey Ojemann) both within and outside of UCLA and dedicated coursework and seminars. The candidate's long-term research focus is devoted to the precise and accurate mapping and interpretation of human brain function that can be used both to advance systems-level characterization of motor and language systems and to develop restorative neurosurgical interventions. Environment: Research and career development activity will primarily be conducted at UCLA, which ranks among the nations top ten research universities and has a record of excellence which is attributable to a strong network of resources, research, education and collaborative opportunities. The state-of-the-art image acquisition and analysis facilities including the UCLA Laboratory of Neuro Imaging (LONI) and the Ahmanson-Lovelace Brain Mapping Center provide an unparalleled and enriched environment for career development that is particularly suited for career enhancement in the field of neuroimaging and clinical neuroscience. Research within LONI is focused on improving the understanding of the brain in health and disease by using computational approaches for the comprehensive mapping of brain structure and function. UCLA's institutional environment promises to promote the candidate to a new level of academic excellence. Research: The overriding hypothesis is that BOLD fMRI signal characteristics are determined by a complex combination of integrated electrophysiological activity (i.e., multiple field potential bands) that vary across cortices and tasks and are modulated by system capacities, limitations, and buffers. We hypothesize that functionally significant signals can be differentiated from non-specific activations based on unique response profiles and patterns of anatomic connectivity. In Specific Aim 1, we will specifically investigate the electrophysiologic basis of the spatial extent of BOLD fMRI signals across cortices, tasks, and task complexity by comparing BOLD and ECoG signals within subjects using finely-tuned motor and language tasks and multivariate analyses. We hypothesize that BOLD spatial extent is electrophysiologically-determined but dependent upon the extent of low-frequency field potential activity rather than high-frequency activity and that a neurovascular buffer exists such that not all electrophysiological changes instigate changes in perfusion. In Specific Aim 2, we critically analyze the electrophysiologic determinants of BOLD signal intensities, with detailed BOLD-ECoG comparisons designed to determine the variability of these relationships across cortices, tasks, and disease states, whether electrophysiologic and BOLD signals respect similar rules of additivity and adaptation, and how BOLD ceiling responses relate to electrophysiology. In Specific Aim 3, we address the hypothesis that functionally relevant brain mapping signals can be differentiated based on distinctive connectivity based biomarkers. Using multimodality comparisons, we will critically scrutinize the relationship between BOLD signals, ESM, DTI tractography, and BOLD and ECoG signal coherence to elucidate the role of connectivity in delineating significant BOLD fMRI activations. Summary: This career development grant combines key elements from the candidate's background and unique and outstanding institutional resources with the development of the skills required to achieve the goal of becoming an independent investigator with a locally unique Neurosurgical Brain Mapping and Restoration Lab at UCLA.
描述(由申请人提供):血氧水平依赖(BOLD)功能性磁共振成像(fMRI)被广泛用于绘制健康和疾病中的人脑。BOLD功能磁共振成像不是直接测量神经元的活动,而是检测与神经元活动相关的灌注依赖信号。BOLD功能磁共振信号的准确解释受到电生理活动,功能解剖和功能灌注之间的精确关系的不完全理解的影响。这项研究计划的总体目标是检查跨任务,皮层和疾病状态的电生理学,连接性和BOLD fMRI信号之间的精确关系。候选人:鉴于他扎实的神经科学训练,全面的一般和亚专业(功能)神经外科训练,以及高质量的研究经验,Nader Pouratian博士已经在人脑映射领域发表了大量文章。这个职业发展和研究建议是他以前工作的自然延伸,该工作采用多模态成像来表征使用功能磁共振成像,光学成像和皮层电刺激映射(ESM)的人类灌注依赖脑映射信号的病因,局限性和能力。在成像专业知识丰富的环境中,直接目标是开发和确保作为赠款提案的成像专家的广度和深度。本建议书的具体职业发展目标是(1)获得额外的脑图谱方法的专业知识(皮层电图和弥散纤维束成像),以成为一个更全面和全面的大脑映射专家(2)获得设施和熟练掌握复杂的统计和信号和图像分析(3),以增加候选人的知识基金在先进的系统神经科学(4)获得科学方法方面的高级培训;(5)确保在研究的道德行为方面的持续培训。这些目标将通过实践实验室经验,指导和世界知名领导人(亚瑟托加博士,苏珊布克海默,伊扎克弗里德,罗伯特奈特和杰弗里奥杰曼)内外的UCLA和专门的课程和研讨会的指导来实现。候选人的长期研究重点是致力于精确和准确的映射和人类大脑功能的解释,可用于推进运动和语言系统的系统级表征,并开发恢复性神经外科干预措施。工作环境:研究和职业发展活动将主要在加州大学洛杉矶分校进行,加州大学洛杉矶分校是美国十大研究型大学之一,拥有卓越的记录,这归功于强大的资源,研究,教育和合作机会网络。最先进的图像采集和分析设施,包括UCLA神经成像实验室(LONI)和Ahmanson-Lovelace脑映射中心,为职业发展提供了无与伦比的丰富环境,特别适合神经成像和临床神经科学领域的职业发展。LONI的研究重点是通过使用计算方法来全面绘制大脑结构和功能,从而提高对健康和疾病中大脑的理解。加州大学洛杉矶分校的制度环境承诺促进候选人的学术卓越的新水平。调研:最重要的假设是BOLD fMRI信号特征是由综合电生理活动的复杂组合决定的(即,多个场电位带),这些场电位带在皮层和任务之间变化,并由系统容量、限制和缓冲区调制。我们假设,功能上重要的信号可以区分从非特异性激活的基础上独特的响应配置文件和模式的解剖连接。在具体目标1中,我们将具体研究BOLD fMRI信号的空间范围的电生理基础,通过比较BOLD和ECoG信号在受试者使用微调运动和语言任务和多变量分析的皮质,任务和任务的复杂性。我们假设BOLD的空间范围是电生理学确定的,但取决于低频场电位活动的程度,而不是高频活动,并存在一个神经血管缓冲区,这样,并不是所有的电生理变化引起灌注的变化。在具体目标2中,我们批判性地分析了BOLD信号强度的电生理决定因素,详细的BOLD-ECoG比较旨在确定这些关系在皮层,任务和疾病状态之间的变化,电生理和BOLD信号是否尊重类似的相加和适应规则,以及BOLD天花板反应与电生理学的关系。在具体目标3中,我们提出了一个假设,即功能相关的脑映射信号可以根据不同的基于连接的生物标志物进行区分。使用多模态比较,我们将严格审查BOLD信号,ESM,DTI纤维束成像,BOLD和ECoG信号的一致性之间的关系,阐明连接在描绘显着的BOLD功能磁共振成像激活的作用。总结:该职业发展补助金将候选人背景和独特而优秀的机构资源的关键要素与实现成为加州大学洛杉矶分校当地独特的神经外科脑映射和恢复实验室的独立调查员所需的技能发展相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NADER POURATIAN其他文献
NADER POURATIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NADER POURATIAN', 18)}}的其他基金
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
10429875 - 财政年份:2021
- 资助金额:
$ 18.91万 - 项目类别:
Cortical-Subcortical Network Dynamics of Anesthesia and Consciousness
麻醉和意识的皮质-皮质下网络动力学
- 批准号:
10517306 - 财政年份:2020
- 资助金额:
$ 18.91万 - 项目类别:
Cortical-Subcortical Network Dynamics of Anesthesia and Consciousness
麻醉和意识的皮质-皮质下网络动力学
- 批准号:
10320052 - 财政年份:2020
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9762991 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
10753285 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9260644 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
Invasive Approach to Model Human Cortex-Basal Ganglia Action-Regulating Networks
模拟人类皮层基底神经节动作调节网络的侵入性方法
- 批准号:
9356331 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9356357 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
- 批准号:
8226539 - 财政年份:2012
- 资助金额:
$ 18.91万 - 项目类别:
Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
- 批准号:
8645628 - 财政年份:2012
- 资助金额:
$ 18.91万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Studentship