Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
基本信息
- 批准号:8226539
- 负责人:
- 金额:$ 18.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyApplications GrantsAreaBase of the BrainBasic ScienceBiological MarkersBrainBrain MappingBuffersCharacteristicsClinicalComb animal structureComplexConsensusCoupledCouplingDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEducationElectrocorticogramElectrophysiology (science)ElementsEnsureEnvironmentEthicsEtiologyFrequenciesFunctional Magnetic Resonance ImagingFundingFutureGoalsGrantHealthHumanImageImage AnalysisInterventionInvestigationKnowledgeLaboratoriesLanguageMagnetic Resonance ImagingMapsMeasuresMediatingMentorshipMethodologyMethodsModalityMotorMultivariate AnalysisNeuronsNeurosciencesPatternPerfusionPublishingRelative (related person)ResearchResearch PersonnelResearch ProposalsResourcesRoleSignal TransductionSolidSpecificityStatistical ModelsStimulusStructureSystemTimeTrainingUniversitiesWorkadvanced systembaseblood oxygen level dependentcareercareer developmentdesignexperienceimprovedinsightmedical specialtiesmultimodalityneuroimagingnoveloptical imagingprogramsresearch and developmentresearch studyresponserestorationskillsspatial relationshipstatistics
项目摘要
DESCRIPTION (provided by applicant): Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) is used ubiquitously to map the human brain, both in health and disease. Instead of directly measuring neuronal activity, BOLD fMRI detects perfusion-dependent signals that are coupled to neuronal activity. The accurate interpretation of BOLD fMRI signals is compromised by an incomplete understanding of the precise relationship between electrophysiological activity, functional anatomy, and function perfusion. The overall goal of this research program is to examine the precise relationship between electrophysiology, connectivity, and BOLD fMRI signals across tasks, cortices, and disease states. Candidate: Given his solid neuroscience training, thorough general and sub-specialty (functional) neurosurgical training, and quality research experiences, Dr. Nader Pouratian has already published extensively in the field of human brain mapping. This career development and research proposal represents a natural extension of his previous work which employed multimodality imaging to characterize the etiology, limitations, and capacities of perfusion-dependent brain mapping signals in humans using fMRI, optical imaging, and electrocortical stimulation mapping (ESM). In an environment rich in imaging expertise, the immediate goals are to develop and ensure the breadth and the depth to function as THE imaging expert on a grant proposal. Specific career development goals of this proposal are (1) to gain expertise in additional brain mapping methodologies (electrocorticography and diffusion tractography) in order to become a more comprehensive and well-rounded brain mapping expert (2) to gain facility with and proficiency in complex statistics and signal and image analyses (3) to augment the candidate's fund of knowledge in advanced systems neuroscience (4) to obtain advanced training in the scientific method and (5) to ensure continued training in the ethical conduct of research. These goals will be accomplished by means of hands-on laboratory experience, mentorship and guidance of world-renowned leaders (Drs. Arthur Toga, Susan Bookheimer, Itzhak Fried, Robert Knight, and Jeffrey Ojemann) both within and outside of UCLA and dedicated coursework and seminars. The candidate's long-term research focus is devoted to the precise and accurate mapping and interpretation of human brain function that can be used both to advance systems-level characterization of motor and language systems and to develop restorative neurosurgical interventions. Environment: Research and career development activity will primarily be conducted at UCLA, which ranks among the nations top ten research universities and has a record of excellence which is attributable to a strong network of resources, research, education and collaborative opportunities. The state-of-the-art image acquisition and analysis facilities including the UCLA Laboratory of Neuro Imaging (LONI) and the Ahmanson-Lovelace Brain Mapping Center provide an unparalleled and enriched environment for career development that is particularly suited for career enhancement in the field of neuroimaging and clinical neuroscience. Research within LONI is focused on improving the understanding of the brain in health and disease by using computational approaches for the comprehensive mapping of brain structure and function. UCLA's institutional environment promises to promote the candidate to a new level of academic excellence. Research: The overriding hypothesis is that BOLD fMRI signal characteristics are determined by a complex combination of integrated electrophysiological activity (i.e., multiple field potential bands) that vary across cortices and tasks and are modulated by system capacities, limitations, and buffers. We hypothesize that functionally significant signals can be differentiated from non-specific activations based on unique response profiles and patterns of anatomic connectivity. In Specific Aim 1, we will specifically investigate the electrophysiologic basis of the spatial extent of BOLD fMRI signals across cortices, tasks, and task complexity by comparing BOLD and ECoG signals within subjects using finely-tuned motor and language tasks and multivariate analyses. We hypothesize that BOLD spatial extent is electrophysiologically-determined but dependent upon the extent of low-frequency field potential activity rather than high-frequency activity and that a neurovascular buffer exists such that not all electrophysiological changes instigate changes in perfusion. In Specific Aim 2, we critically analyze the electrophysiologic determinants of BOLD signal intensities, with detailed BOLD-ECoG comparisons designed to determine the variability of these relationships across cortices, tasks, and disease states, whether electrophysiologic and BOLD signals respect similar rules of additivity and adaptation, and how BOLD ceiling responses relate to electrophysiology. In Specific Aim 3, we address the hypothesis that functionally relevant brain mapping signals can be differentiated based on distinctive connectivity based biomarkers. Using multimodality comparisons, we will critically scrutinize the relationship between BOLD signals, ESM, DTI tractography, and BOLD and ECoG signal coherence to elucidate the role of connectivity in delineating significant BOLD fMRI activations. Summary: This career development grant combines key elements from the candidate's background and unique and outstanding institutional resources with the development of the skills required to achieve the goal of becoming an independent investigator with a locally unique Neurosurgical Brain Mapping and Restoration Lab at UCLA.
PUBLIC HEALTH RELEVANCE: Blood Oxygenation Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) is used ubiquitously to study brain function and organization, both clinically and for research in health and disease. Yet, to date, there is an incomplete understanding of what these signals represent, how they relate to underlying neuronal activity in space and magnitude, and ultimately how representative these signals are of brain function and organization. By combing BOLD fMRI studies with electrocorticography and diffusion tensor imaging, the proposed studies will provide insight into the electrophysiologic and anatomic basis of BOLD fMRI signals and thereby augment the design and interpretation of future basic science and clinical fMRI-based brain mapping studies.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NADER POURATIAN其他文献
NADER POURATIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NADER POURATIAN', 18)}}的其他基金
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
10429875 - 财政年份:2021
- 资助金额:
$ 18.91万 - 项目类别:
Cortical-Subcortical Network Dynamics of Anesthesia and Consciousness
麻醉和意识的皮质-皮质下网络动力学
- 批准号:
10517306 - 财政年份:2020
- 资助金额:
$ 18.91万 - 项目类别:
Cortical-Subcortical Network Dynamics of Anesthesia and Consciousness
麻醉和意识的皮质-皮质下网络动力学
- 批准号:
10320052 - 财政年份:2020
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9762991 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
10753285 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9260644 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
Invasive Approach to Model Human Cortex-Basal Ganglia Action-Regulating Networks
模拟人类皮层基底神经节动作调节网络的侵入性方法
- 批准号:
9356331 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
The Pathophysiology of Network Synchrony in Parkinson's Disease
帕金森病网络同步的病理生理学
- 批准号:
9356357 - 财政年份:2016
- 资助金额:
$ 18.91万 - 项目类别:
Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
- 批准号:
8448581 - 财政年份:2012
- 资助金额:
$ 18.91万 - 项目类别:
Electrophysiologic and Anatomic Basis of BOLD fMRI
BOLD fMRI 的电生理学和解剖学基础
- 批准号:
8645628 - 财政年份:2012
- 资助金额:
$ 18.91万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 18.91万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 18.91万 - 项目类别:
Studentship